Loading…
Therapy-Induced Senescence Drives Bone Loss
Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2020-03, Vol.80 (5), p.1171-1182 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13 |
container_end_page | 1182 |
container_issue | 5 |
container_start_page | 1171 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 80 |
creator | Yao, Zhangting Murali, Bhavna Ren, Qihao Luo, Xianmin Faget, Douglas V Cole, Tom Ricci, Biancamaria Thotala, Dinesh Monahan, Joseph van Deursen, Jan M Baker, Darren Faccio, Roberta Schwarz, Julie K Stewart, Sheila A |
description | Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors. |
doi_str_mv | 10.1158/0008-5472.can-19-2348 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7056549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31932453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZ_grLvEs19kxeh1luh6IP1OaTJrF1pd0vSFvrvzVItCgPDMHPOHD6ELim5oVTqW0KIxlKU7Ma7BlODGRf6CPWp5BqXQshj1D_c9NBZSl95lJTIU9Tj1HAmJO-j6-kcolvt8LgJGw-heIcGkofGQ_EQ6y2k4r5toJi0KZ2jk8otElz89AH6eHqcjl7w5O15PBpOsJfMrDEIKhUzoQxeOO-8AqVFLmDAKkbyXEllqIcSZlwRH6jRQVdMOeYZ95QP0N3ed7WZLSHkMOvoFnYV66WLO9u62v7fNPXcfrZbWxKppDDZQO4NfMyxI1QHLSW2o2c7MrYjY0fDV0uN7ehl3dXfxwfVLy7-DWPqbA8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Therapy-Induced Senescence Drives Bone Loss</title><source>EZB Electronic Journals Library</source><creator>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</creator><creatorcontrib>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</creatorcontrib><description>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-19-2348</identifier><identifier>PMID: 31932453</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antineoplastic Agents - adverse effects ; Cellular Senescence - drug effects ; Disease Models, Animal ; Doxorubicin - adverse effects ; Femur - cytology ; Femur - diagnostic imaging ; Femur - pathology ; Humans ; Injections, Intraperitoneal ; Intracellular Signaling Peptides and Proteins - metabolism ; MAP Kinase Signaling System - drug effects ; Mice ; Mice, Transgenic ; Neoplasms - drug therapy ; Osteoporosis - chemically induced ; Osteoporosis - diagnosis ; Osteoporosis - pathology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Paclitaxel - adverse effects ; Protein Serine-Threonine Kinases - metabolism ; X-Ray Microtomography</subject><ispartof>Cancer research (Chicago, Ill.), 2020-03, Vol.80 (5), p.1171-1182</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</citedby><cites>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</cites><orcidid>0000-0002-2452-0962 ; 0000-0003-2407-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Zhangting</creatorcontrib><creatorcontrib>Murali, Bhavna</creatorcontrib><creatorcontrib>Ren, Qihao</creatorcontrib><creatorcontrib>Luo, Xianmin</creatorcontrib><creatorcontrib>Faget, Douglas V</creatorcontrib><creatorcontrib>Cole, Tom</creatorcontrib><creatorcontrib>Ricci, Biancamaria</creatorcontrib><creatorcontrib>Thotala, Dinesh</creatorcontrib><creatorcontrib>Monahan, Joseph</creatorcontrib><creatorcontrib>van Deursen, Jan M</creatorcontrib><creatorcontrib>Baker, Darren</creatorcontrib><creatorcontrib>Faccio, Roberta</creatorcontrib><creatorcontrib>Schwarz, Julie K</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><title>Therapy-Induced Senescence Drives Bone Loss</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</description><subject>Animals</subject><subject>Antineoplastic Agents - adverse effects</subject><subject>Cellular Senescence - drug effects</subject><subject>Disease Models, Animal</subject><subject>Doxorubicin - adverse effects</subject><subject>Femur - cytology</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - pathology</subject><subject>Humans</subject><subject>Injections, Intraperitoneal</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neoplasms - drug therapy</subject><subject>Osteoporosis - chemically induced</subject><subject>Osteoporosis - diagnosis</subject><subject>Osteoporosis - pathology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Paclitaxel - adverse effects</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>X-Ray Microtomography</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLAzEQhYMotlZ_grLvEs19kxeh1luh6IP1OaTJrF1pd0vSFvrvzVItCgPDMHPOHD6ELim5oVTqW0KIxlKU7Ma7BlODGRf6CPWp5BqXQshj1D_c9NBZSl95lJTIU9Tj1HAmJO-j6-kcolvt8LgJGw-heIcGkofGQ_EQ6y2k4r5toJi0KZ2jk8otElz89AH6eHqcjl7w5O15PBpOsJfMrDEIKhUzoQxeOO-8AqVFLmDAKkbyXEllqIcSZlwRH6jRQVdMOeYZ95QP0N3ed7WZLSHkMOvoFnYV66WLO9u62v7fNPXcfrZbWxKppDDZQO4NfMyxI1QHLSW2o2c7MrYjY0fDV0uN7ehl3dXfxwfVLy7-DWPqbA8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Yao, Zhangting</creator><creator>Murali, Bhavna</creator><creator>Ren, Qihao</creator><creator>Luo, Xianmin</creator><creator>Faget, Douglas V</creator><creator>Cole, Tom</creator><creator>Ricci, Biancamaria</creator><creator>Thotala, Dinesh</creator><creator>Monahan, Joseph</creator><creator>van Deursen, Jan M</creator><creator>Baker, Darren</creator><creator>Faccio, Roberta</creator><creator>Schwarz, Julie K</creator><creator>Stewart, Sheila A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2452-0962</orcidid><orcidid>https://orcid.org/0000-0003-2407-7531</orcidid></search><sort><creationdate>20200301</creationdate><title>Therapy-Induced Senescence Drives Bone Loss</title><author>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - adverse effects</topic><topic>Cellular Senescence - drug effects</topic><topic>Disease Models, Animal</topic><topic>Doxorubicin - adverse effects</topic><topic>Femur - cytology</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - pathology</topic><topic>Humans</topic><topic>Injections, Intraperitoneal</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neoplasms - drug therapy</topic><topic>Osteoporosis - chemically induced</topic><topic>Osteoporosis - diagnosis</topic><topic>Osteoporosis - pathology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Paclitaxel - adverse effects</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zhangting</creatorcontrib><creatorcontrib>Murali, Bhavna</creatorcontrib><creatorcontrib>Ren, Qihao</creatorcontrib><creatorcontrib>Luo, Xianmin</creatorcontrib><creatorcontrib>Faget, Douglas V</creatorcontrib><creatorcontrib>Cole, Tom</creatorcontrib><creatorcontrib>Ricci, Biancamaria</creatorcontrib><creatorcontrib>Thotala, Dinesh</creatorcontrib><creatorcontrib>Monahan, Joseph</creatorcontrib><creatorcontrib>van Deursen, Jan M</creatorcontrib><creatorcontrib>Baker, Darren</creatorcontrib><creatorcontrib>Faccio, Roberta</creatorcontrib><creatorcontrib>Schwarz, Julie K</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zhangting</au><au>Murali, Bhavna</au><au>Ren, Qihao</au><au>Luo, Xianmin</au><au>Faget, Douglas V</au><au>Cole, Tom</au><au>Ricci, Biancamaria</au><au>Thotala, Dinesh</au><au>Monahan, Joseph</au><au>van Deursen, Jan M</au><au>Baker, Darren</au><au>Faccio, Roberta</au><au>Schwarz, Julie K</au><au>Stewart, Sheila A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapy-Induced Senescence Drives Bone Loss</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>1171</spage><epage>1182</epage><pages>1171-1182</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</abstract><cop>United States</cop><pmid>31932453</pmid><doi>10.1158/0008-5472.can-19-2348</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2452-0962</orcidid><orcidid>https://orcid.org/0000-0003-2407-7531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2020-03, Vol.80 (5), p.1171-1182 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7056549 |
source | EZB Electronic Journals Library |
subjects | Animals Antineoplastic Agents - adverse effects Cellular Senescence - drug effects Disease Models, Animal Doxorubicin - adverse effects Femur - cytology Femur - diagnostic imaging Femur - pathology Humans Injections, Intraperitoneal Intracellular Signaling Peptides and Proteins - metabolism MAP Kinase Signaling System - drug effects Mice Mice, Transgenic Neoplasms - drug therapy Osteoporosis - chemically induced Osteoporosis - diagnosis Osteoporosis - pathology p38 Mitogen-Activated Protein Kinases - metabolism Paclitaxel - adverse effects Protein Serine-Threonine Kinases - metabolism X-Ray Microtomography |
title | Therapy-Induced Senescence Drives Bone Loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapy-Induced%20Senescence%20Drives%20Bone%20Loss&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Yao,%20Zhangting&rft.date=2020-03-01&rft.volume=80&rft.issue=5&rft.spage=1171&rft.epage=1182&rft.pages=1171-1182&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-19-2348&rft_dat=%3Cpubmed_cross%3E31932453%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31932453&rfr_iscdi=true |