Loading…

Therapy-Induced Senescence Drives Bone Loss

Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2020-03, Vol.80 (5), p.1171-1182
Main Authors: Yao, Zhangting, Murali, Bhavna, Ren, Qihao, Luo, Xianmin, Faget, Douglas V, Cole, Tom, Ricci, Biancamaria, Thotala, Dinesh, Monahan, Joseph, van Deursen, Jan M, Baker, Darren, Faccio, Roberta, Schwarz, Julie K, Stewart, Sheila A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13
cites cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13
container_end_page 1182
container_issue 5
container_start_page 1171
container_title Cancer research (Chicago, Ill.)
container_volume 80
creator Yao, Zhangting
Murali, Bhavna
Ren, Qihao
Luo, Xianmin
Faget, Douglas V
Cole, Tom
Ricci, Biancamaria
Thotala, Dinesh
Monahan, Joseph
van Deursen, Jan M
Baker, Darren
Faccio, Roberta
Schwarz, Julie K
Stewart, Sheila A
description Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.
doi_str_mv 10.1158/0008-5472.can-19-2348
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7056549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31932453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZ_grLvEs19kxeh1luh6IP1OaTJrF1pd0vSFvrvzVItCgPDMHPOHD6ELim5oVTqW0KIxlKU7Ma7BlODGRf6CPWp5BqXQshj1D_c9NBZSl95lJTIU9Tj1HAmJO-j6-kcolvt8LgJGw-heIcGkofGQ_EQ6y2k4r5toJi0KZ2jk8otElz89AH6eHqcjl7w5O15PBpOsJfMrDEIKhUzoQxeOO-8AqVFLmDAKkbyXEllqIcSZlwRH6jRQVdMOeYZ95QP0N3ed7WZLSHkMOvoFnYV66WLO9u62v7fNPXcfrZbWxKppDDZQO4NfMyxI1QHLSW2o2c7MrYjY0fDV0uN7ehl3dXfxwfVLy7-DWPqbA8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Therapy-Induced Senescence Drives Bone Loss</title><source>EZB Electronic Journals Library</source><creator>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</creator><creatorcontrib>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</creatorcontrib><description>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-19-2348</identifier><identifier>PMID: 31932453</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antineoplastic Agents - adverse effects ; Cellular Senescence - drug effects ; Disease Models, Animal ; Doxorubicin - adverse effects ; Femur - cytology ; Femur - diagnostic imaging ; Femur - pathology ; Humans ; Injections, Intraperitoneal ; Intracellular Signaling Peptides and Proteins - metabolism ; MAP Kinase Signaling System - drug effects ; Mice ; Mice, Transgenic ; Neoplasms - drug therapy ; Osteoporosis - chemically induced ; Osteoporosis - diagnosis ; Osteoporosis - pathology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Paclitaxel - adverse effects ; Protein Serine-Threonine Kinases - metabolism ; X-Ray Microtomography</subject><ispartof>Cancer research (Chicago, Ill.), 2020-03, Vol.80 (5), p.1171-1182</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</citedby><cites>FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</cites><orcidid>0000-0002-2452-0962 ; 0000-0003-2407-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Zhangting</creatorcontrib><creatorcontrib>Murali, Bhavna</creatorcontrib><creatorcontrib>Ren, Qihao</creatorcontrib><creatorcontrib>Luo, Xianmin</creatorcontrib><creatorcontrib>Faget, Douglas V</creatorcontrib><creatorcontrib>Cole, Tom</creatorcontrib><creatorcontrib>Ricci, Biancamaria</creatorcontrib><creatorcontrib>Thotala, Dinesh</creatorcontrib><creatorcontrib>Monahan, Joseph</creatorcontrib><creatorcontrib>van Deursen, Jan M</creatorcontrib><creatorcontrib>Baker, Darren</creatorcontrib><creatorcontrib>Faccio, Roberta</creatorcontrib><creatorcontrib>Schwarz, Julie K</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><title>Therapy-Induced Senescence Drives Bone Loss</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</description><subject>Animals</subject><subject>Antineoplastic Agents - adverse effects</subject><subject>Cellular Senescence - drug effects</subject><subject>Disease Models, Animal</subject><subject>Doxorubicin - adverse effects</subject><subject>Femur - cytology</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - pathology</subject><subject>Humans</subject><subject>Injections, Intraperitoneal</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neoplasms - drug therapy</subject><subject>Osteoporosis - chemically induced</subject><subject>Osteoporosis - diagnosis</subject><subject>Osteoporosis - pathology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Paclitaxel - adverse effects</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>X-Ray Microtomography</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLAzEQhYMotlZ_grLvEs19kxeh1luh6IP1OaTJrF1pd0vSFvrvzVItCgPDMHPOHD6ELim5oVTqW0KIxlKU7Ma7BlODGRf6CPWp5BqXQshj1D_c9NBZSl95lJTIU9Tj1HAmJO-j6-kcolvt8LgJGw-heIcGkofGQ_EQ6y2k4r5toJi0KZ2jk8otElz89AH6eHqcjl7w5O15PBpOsJfMrDEIKhUzoQxeOO-8AqVFLmDAKkbyXEllqIcSZlwRH6jRQVdMOeYZ95QP0N3ed7WZLSHkMOvoFnYV66WLO9u62v7fNPXcfrZbWxKppDDZQO4NfMyxI1QHLSW2o2c7MrYjY0fDV0uN7ehl3dXfxwfVLy7-DWPqbA8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Yao, Zhangting</creator><creator>Murali, Bhavna</creator><creator>Ren, Qihao</creator><creator>Luo, Xianmin</creator><creator>Faget, Douglas V</creator><creator>Cole, Tom</creator><creator>Ricci, Biancamaria</creator><creator>Thotala, Dinesh</creator><creator>Monahan, Joseph</creator><creator>van Deursen, Jan M</creator><creator>Baker, Darren</creator><creator>Faccio, Roberta</creator><creator>Schwarz, Julie K</creator><creator>Stewart, Sheila A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2452-0962</orcidid><orcidid>https://orcid.org/0000-0003-2407-7531</orcidid></search><sort><creationdate>20200301</creationdate><title>Therapy-Induced Senescence Drives Bone Loss</title><author>Yao, Zhangting ; Murali, Bhavna ; Ren, Qihao ; Luo, Xianmin ; Faget, Douglas V ; Cole, Tom ; Ricci, Biancamaria ; Thotala, Dinesh ; Monahan, Joseph ; van Deursen, Jan M ; Baker, Darren ; Faccio, Roberta ; Schwarz, Julie K ; Stewart, Sheila A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - adverse effects</topic><topic>Cellular Senescence - drug effects</topic><topic>Disease Models, Animal</topic><topic>Doxorubicin - adverse effects</topic><topic>Femur - cytology</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - pathology</topic><topic>Humans</topic><topic>Injections, Intraperitoneal</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neoplasms - drug therapy</topic><topic>Osteoporosis - chemically induced</topic><topic>Osteoporosis - diagnosis</topic><topic>Osteoporosis - pathology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Paclitaxel - adverse effects</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zhangting</creatorcontrib><creatorcontrib>Murali, Bhavna</creatorcontrib><creatorcontrib>Ren, Qihao</creatorcontrib><creatorcontrib>Luo, Xianmin</creatorcontrib><creatorcontrib>Faget, Douglas V</creatorcontrib><creatorcontrib>Cole, Tom</creatorcontrib><creatorcontrib>Ricci, Biancamaria</creatorcontrib><creatorcontrib>Thotala, Dinesh</creatorcontrib><creatorcontrib>Monahan, Joseph</creatorcontrib><creatorcontrib>van Deursen, Jan M</creatorcontrib><creatorcontrib>Baker, Darren</creatorcontrib><creatorcontrib>Faccio, Roberta</creatorcontrib><creatorcontrib>Schwarz, Julie K</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zhangting</au><au>Murali, Bhavna</au><au>Ren, Qihao</au><au>Luo, Xianmin</au><au>Faget, Douglas V</au><au>Cole, Tom</au><au>Ricci, Biancamaria</au><au>Thotala, Dinesh</au><au>Monahan, Joseph</au><au>van Deursen, Jan M</au><au>Baker, Darren</au><au>Faccio, Roberta</au><au>Schwarz, Julie K</au><au>Stewart, Sheila A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapy-Induced Senescence Drives Bone Loss</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>1171</spage><epage>1182</epage><pages>1171-1182</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.</abstract><cop>United States</cop><pmid>31932453</pmid><doi>10.1158/0008-5472.can-19-2348</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2452-0962</orcidid><orcidid>https://orcid.org/0000-0003-2407-7531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2020-03, Vol.80 (5), p.1171-1182
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7056549
source EZB Electronic Journals Library
subjects Animals
Antineoplastic Agents - adverse effects
Cellular Senescence - drug effects
Disease Models, Animal
Doxorubicin - adverse effects
Femur - cytology
Femur - diagnostic imaging
Femur - pathology
Humans
Injections, Intraperitoneal
Intracellular Signaling Peptides and Proteins - metabolism
MAP Kinase Signaling System - drug effects
Mice
Mice, Transgenic
Neoplasms - drug therapy
Osteoporosis - chemically induced
Osteoporosis - diagnosis
Osteoporosis - pathology
p38 Mitogen-Activated Protein Kinases - metabolism
Paclitaxel - adverse effects
Protein Serine-Threonine Kinases - metabolism
X-Ray Microtomography
title Therapy-Induced Senescence Drives Bone Loss
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapy-Induced%20Senescence%20Drives%20Bone%20Loss&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Yao,%20Zhangting&rft.date=2020-03-01&rft.volume=80&rft.issue=5&rft.spage=1171&rft.epage=1182&rft.pages=1171-1182&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-19-2348&rft_dat=%3Cpubmed_cross%3E31932453%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-e415629d7dc4acac6e684684e2e2f20c6ef5691ce7eb360cd198d8f26a2c23c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31932453&rfr_iscdi=true