Loading…

Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization

In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezi...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2020, Vol.2020 (2020), p.1-10
Main Authors: Wang, Lin, Zang, Shaofei, Liu, Yang, Ma, Jianwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3
cites cdi_FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3
container_end_page 10
container_issue 2020
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2020
creator Wang, Lin
Zang, Shaofei
Liu, Yang
Ma, Jianwei
description In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezier curve. Second, a shorter path is selected by an optimization criterion that the length of the Bezier curve is determined by the control points. Finally, a safe distance and adaptive penalty factor are introduced into the fitness function to ensure the safety of the walking process of the robot. Numerous experiments are implemented in two different environments and compared with the existing methods. It is proved that the proposed method is more effective to generate a shorter, smoother, and safer path compared with traditional approaches.
doi_str_mv 10.1155/2020/9813040
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622721281</galeid><sourcerecordid>A622721281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3</originalsourceid><addsrcrecordid>eNqNkc1rFDEYh4NYbLt68ywBL0K7Nh-Tr4uwXWwrFFpEwVvITDK7KTPJNpOx2L_eDLvdqidPeeF9eJJffgC8xegjxoydEUTQmZKYogq9AEeYSzFnRNCX-5mzQ3A8DHcIMcEQeQUOKcGykhgfgR9fYx0zvDV5DW87E4IPK3huBmdhDPDSBZd9AxfdKiaf1z28GKfVQ5nhMobswxjHAZ67R-8SvNlk3_tHk30Mr8FBa7rBvdmdM_D94vO35dX8-ubyy3JxPW8qpfIc87p22NJKUW4laTlXtSKto5SbhjfO4FpUWEpkEK6M4YxKUTfCWmxqy5ilM_Bp692Mde9s40JOptOb5HuTfulovP57E_xar-JPLRBHkqsi-LATpHg_uiHr3g-N68pnuJJNEyqkFBJzVND3_6B3cUyhxJsoqhQqmZ6plemc9qGN5d5mkuoFJ0QQTEpbM3C6pZoUhyG5dv9kjPRUrJ6K1btiC_7uz5h7-KnJApxsgbUP1jz4_9S5wrjWPNOYSiUJ_Q1ZErP2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373990499</pqid></control><display><type>article</type><title>Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization</title><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Lin ; Zang, Shaofei ; Liu, Yang ; Ma, Jianwei</creator><contributor>Köker, Raşit ; Raşit Köker</contributor><creatorcontrib>Wang, Lin ; Zang, Shaofei ; Liu, Yang ; Ma, Jianwei ; Köker, Raşit ; Raşit Köker</creatorcontrib><description>In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezier curve. Second, a shorter path is selected by an optimization criterion that the length of the Bezier curve is determined by the control points. Finally, a safe distance and adaptive penalty factor are introduced into the fitness function to ensure the safety of the walking process of the robot. Numerous experiments are implemented in two different environments and compared with the existing methods. It is proved that the proposed method is more effective to generate a shorter, smoother, and safer path compared with traditional approaches.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2020/9813040</identifier><identifier>PMID: 32184811</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Algorithms ; Computer Simulation ; Curves ; Genetic algorithms ; Inflection points ; Methods ; Mutation ; Optimization ; Path planning ; Planning ; Robotics - methods ; Robots ; Walking</subject><ispartof>Computational intelligence and neuroscience, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Jianwei Ma et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Jianwei Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Jianwei Ma et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3</citedby><cites>FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3</cites><orcidid>0000-0002-3905-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2373990499/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2373990499?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,25731,27900,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32184811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Köker, Raşit</contributor><contributor>Raşit Köker</contributor><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zang, Shaofei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ma, Jianwei</creatorcontrib><title>Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezier curve. Second, a shorter path is selected by an optimization criterion that the length of the Bezier curve is determined by the control points. Finally, a safe distance and adaptive penalty factor are introduced into the fitness function to ensure the safety of the walking process of the robot. Numerous experiments are implemented in two different environments and compared with the existing methods. It is proved that the proposed method is more effective to generate a shorter, smoother, and safer path compared with traditional approaches.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Curves</subject><subject>Genetic algorithms</subject><subject>Inflection points</subject><subject>Methods</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Planning</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>Walking</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkc1rFDEYh4NYbLt68ywBL0K7Nh-Tr4uwXWwrFFpEwVvITDK7KTPJNpOx2L_eDLvdqidPeeF9eJJffgC8xegjxoydEUTQmZKYogq9AEeYSzFnRNCX-5mzQ3A8DHcIMcEQeQUOKcGykhgfgR9fYx0zvDV5DW87E4IPK3huBmdhDPDSBZd9AxfdKiaf1z28GKfVQ5nhMobswxjHAZ67R-8SvNlk3_tHk30Mr8FBa7rBvdmdM_D94vO35dX8-ubyy3JxPW8qpfIc87p22NJKUW4laTlXtSKto5SbhjfO4FpUWEpkEK6M4YxKUTfCWmxqy5ilM_Bp692Mde9s40JOptOb5HuTfulovP57E_xar-JPLRBHkqsi-LATpHg_uiHr3g-N68pnuJJNEyqkFBJzVND3_6B3cUyhxJsoqhQqmZ6plemc9qGN5d5mkuoFJ0QQTEpbM3C6pZoUhyG5dv9kjPRUrJ6K1btiC_7uz5h7-KnJApxsgbUP1jz4_9S5wrjWPNOYSiUJ_Q1ZErP2</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Lin</creator><creator>Zang, Shaofei</creator><creator>Liu, Yang</creator><creator>Ma, Jianwei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3905-0115</orcidid></search><sort><creationdate>2020</creationdate><title>Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization</title><author>Wang, Lin ; Zang, Shaofei ; Liu, Yang ; Ma, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Curves</topic><topic>Genetic algorithms</topic><topic>Inflection points</topic><topic>Methods</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Planning</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zang, Shaofei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ma, Jianwei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lin</au><au>Zang, Shaofei</au><au>Liu, Yang</au><au>Ma, Jianwei</au><au>Köker, Raşit</au><au>Raşit Köker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezier curve. Second, a shorter path is selected by an optimization criterion that the length of the Bezier curve is determined by the control points. Finally, a safe distance and adaptive penalty factor are introduced into the fitness function to ensure the safety of the walking process of the robot. Numerous experiments are implemented in two different environments and compared with the existing methods. It is proved that the proposed method is more effective to generate a shorter, smoother, and safer path compared with traditional approaches.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32184811</pmid><doi>10.1155/2020/9813040</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3905-0115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2020, Vol.2020 (2020), p.1-10
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060869
source Wiley Online Library Open Access; ProQuest - Publicly Available Content Database
subjects Adaptive control
Algorithms
Computer Simulation
Curves
Genetic algorithms
Inflection points
Methods
Mutation
Optimization
Path planning
Planning
Robotics - methods
Robots
Walking
title Robot Path Planning Based on Genetic Algorithm Fused with Continuous Bezier Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot%20Path%20Planning%20Based%20on%20Genetic%20Algorithm%20Fused%20with%20Continuous%20Bezier%20Optimization&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Wang,%20Lin&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2020/9813040&rft_dat=%3Cgale_pubme%3EA622721281%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-16bbe1d34936d82f669b92fe336ac6cea1b741880a014aa65387bc7dd1abd55d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2373990499&rft_id=info:pmid/32184811&rft_galeid=A622721281&rfr_iscdi=true