Loading…
Origin of the Electron–Phonon Interaction of Topological Semimetal Surfaces Measured with Helium Atom Scattering
He atom scattering has been demonstrated to be a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here it is shown that the theory linking λ to the thermal attenuation of atom scattering spectra (the Debye–Waller factor) can be applied to topologi...
Saved in:
Published in: | The journal of physical chemistry letters 2020-03, Vol.11 (5), p.1927-1933 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | He atom scattering has been demonstrated to be a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here it is shown that the theory linking λ to the thermal attenuation of atom scattering spectra (the Debye–Waller factor) can be applied to topological semimetal surfaces, such as the quasi-one-dimensional charge-density-wave system Bi(114) and the layered pnictogen chalcogenides. The electron−phonon coupling, as determined for several topological insulators belonging to the class of bismuth chalcogenides, suggests a dominant contribution of the surface quantum well states over the Dirac electrons in terms of λ. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.9b03829 |