Loading…
Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane
Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated end...
Saved in:
Published in: | Communications biology 2020-03, Vol.3 (1), p.117-117, Article 117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 117 |
container_title | Communications biology |
container_volume | 3 |
creator | Cao, Fakun Zhou, Yuhuan Liu, Xiaoting Yu, Cheng-han |
description | Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.
Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent. |
doi_str_mv | 10.1038/s42003-020-0843-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377355291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhoMotlz7AG5kwI2b6EkyyUw2glStQkERXYfczMl1yiS5JnMv9LV8EJ_JDNPWKrhKyP-d_-TnJ-Qpg5cMRP-qtBxAUOBAoW8F5Q_IKRdaU6Fa_vDe_YSclXIFAExrrUT7mJwIzjpgDE5J-pyGVFLAxqcc7Dym2OxzCmnG0uwnW4JtAoZtthGbMR7tbowrZeNQH2bc5THSXz9Fg3FI7npOZSzNojfHsbh0KM2Xi7f01uMJeeTtVPDs5tyQb-_ffT3_QC8_XXw8f3NJXSsZp046roAPg1Wd7VFaVNyxlnmlPArZgQbZOi-4RI89oFKu98rZwWsn2HYrNuT16rs_bAMODuOc7WT2eQw2X5tkR_O3EsfvZpeOpoMOQLJq8OLGIKcfByyzCTUOTlMNUUMZLrpOSMn1gj7_B71KhxxrvIVSulWS95ViK-VyKiWjv_sMA7M0atZGTW3ULI3W4Q15dj_F3cRtfxXgK1CqFHeY_6z-v-tvNeOukA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376946528</pqid></control><display><type>article</type><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</creator><creatorcontrib>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</creatorcontrib><description>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.
Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0843-2</identifier><identifier>PMID: 32170110</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 38/109 ; 38/70 ; 38/89 ; 631/57/1461 ; 631/80/128 ; 631/80/79 ; Actin ; Actins - metabolism ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - metabolism ; Animals ; Biology ; Biomedical and Life Sciences ; Cell Adhesion ; Cell adhesion & migration ; Cell Membrane - metabolism ; Cells, Cultured ; Clathrin ; Clathrin - genetics ; Clathrin - metabolism ; Cytoskeleton ; Dynamin ; Dynamin II - genetics ; Dynamin II - metabolism ; Endocytosis ; Endocytosis - genetics ; Fibroblasts - metabolism ; Gene Knockdown Techniques ; Humans ; Integrin beta3 - genetics ; Integrin beta3 - metabolism ; Invaginations ; Life Sciences ; Ligands ; Membranes, Artificial ; Mice ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Oligopeptides - metabolism ; Podosomes - metabolism ; Polymerization ; Rats ; Transfection ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Communications biology, 2020-03, Vol.3 (1), p.117-117, Article 117</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</citedby><cites>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</cites><orcidid>0000-0003-0542-4374 ; 0000-0002-8821-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376946528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32170110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Zhou, Yuhuan</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Yu, Cheng-han</creatorcontrib><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.
Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>38/109</subject><subject>38/70</subject><subject>38/89</subject><subject>631/57/1461</subject><subject>631/80/128</subject><subject>631/80/79</subject><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Clathrin</subject><subject>Clathrin - genetics</subject><subject>Clathrin - metabolism</subject><subject>Cytoskeleton</subject><subject>Dynamin</subject><subject>Dynamin II - genetics</subject><subject>Dynamin II - metabolism</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Integrin beta3 - genetics</subject><subject>Integrin beta3 - metabolism</subject><subject>Invaginations</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Oligopeptides - metabolism</subject><subject>Podosomes - metabolism</subject><subject>Polymerization</subject><subject>Rats</subject><subject>Transfection</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kcFqFTEUhoMotlz7AG5kwI2b6EkyyUw2glStQkERXYfczMl1yiS5JnMv9LV8EJ_JDNPWKrhKyP-d_-TnJ-Qpg5cMRP-qtBxAUOBAoW8F5Q_IKRdaU6Fa_vDe_YSclXIFAExrrUT7mJwIzjpgDE5J-pyGVFLAxqcc7Dym2OxzCmnG0uwnW4JtAoZtthGbMR7tbowrZeNQH2bc5THSXz9Fg3FI7npOZSzNojfHsbh0KM2Xi7f01uMJeeTtVPDs5tyQb-_ffT3_QC8_XXw8f3NJXSsZp046roAPg1Wd7VFaVNyxlnmlPArZgQbZOi-4RI89oFKu98rZwWsn2HYrNuT16rs_bAMODuOc7WT2eQw2X5tkR_O3EsfvZpeOpoMOQLJq8OLGIKcfByyzCTUOTlMNUUMZLrpOSMn1gj7_B71KhxxrvIVSulWS95ViK-VyKiWjv_sMA7M0atZGTW3ULI3W4Q15dj_F3cRtfxXgK1CqFHeY_6z-v-tvNeOukA</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Cao, Fakun</creator><creator>Zhou, Yuhuan</creator><creator>Liu, Xiaoting</creator><creator>Yu, Cheng-han</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0542-4374</orcidid><orcidid>https://orcid.org/0000-0002-8821-8877</orcidid></search><sort><creationdate>20200313</creationdate><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><author>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>38/109</topic><topic>38/70</topic><topic>38/89</topic><topic>631/57/1461</topic><topic>631/80/128</topic><topic>631/80/79</topic><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Clathrin</topic><topic>Clathrin - genetics</topic><topic>Clathrin - metabolism</topic><topic>Cytoskeleton</topic><topic>Dynamin</topic><topic>Dynamin II - genetics</topic><topic>Dynamin II - metabolism</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Integrin beta3 - genetics</topic><topic>Integrin beta3 - metabolism</topic><topic>Invaginations</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Oligopeptides - metabolism</topic><topic>Podosomes - metabolism</topic><topic>Polymerization</topic><topic>Rats</topic><topic>Transfection</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Zhou, Yuhuan</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Yu, Cheng-han</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fakun</au><au>Zhou, Yuhuan</au><au>Liu, Xiaoting</au><au>Yu, Cheng-han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>117</spage><epage>117</epage><pages>117-117</pages><artnum>117</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.
Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32170110</pmid><doi>10.1038/s42003-020-0843-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0542-4374</orcidid><orcidid>https://orcid.org/0000-0002-8821-8877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2020-03, Vol.3 (1), p.117-117, Article 117 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070051 |
source | Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/1 14/19 14/35 38/109 38/70 38/89 631/57/1461 631/80/128 631/80/79 Actin Actins - metabolism Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Adaptor Proteins, Vesicular Transport - genetics Adaptor Proteins, Vesicular Transport - metabolism Animals Biology Biomedical and Life Sciences Cell Adhesion Cell adhesion & migration Cell Membrane - metabolism Cells, Cultured Clathrin Clathrin - genetics Clathrin - metabolism Cytoskeleton Dynamin Dynamin II - genetics Dynamin II - metabolism Endocytosis Endocytosis - genetics Fibroblasts - metabolism Gene Knockdown Techniques Humans Integrin beta3 - genetics Integrin beta3 - metabolism Invaginations Life Sciences Ligands Membranes, Artificial Mice Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Oligopeptides - metabolism Podosomes - metabolism Polymerization Rats Transfection Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Podosome%20formation%20promotes%20plasma%20membrane%20invagination%20and%20integrin-%CE%B23%20endocytosis%20on%20a%20viscous%20RGD-membrane&rft.jtitle=Communications%20biology&rft.au=Cao,%20Fakun&rft.date=2020-03-13&rft.volume=3&rft.issue=1&rft.spage=117&rft.epage=117&rft.pages=117-117&rft.artnum=117&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0843-2&rft_dat=%3Cproquest_pubme%3E2377355291%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376946528&rft_id=info:pmid/32170110&rfr_iscdi=true |