Loading…

Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane

Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated end...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2020-03, Vol.3 (1), p.117-117, Article 117
Main Authors: Cao, Fakun, Zhou, Yuhuan, Liu, Xiaoting, Yu, Cheng-han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3
cites cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3
container_end_page 117
container_issue 1
container_start_page 117
container_title Communications biology
container_volume 3
creator Cao, Fakun
Zhou, Yuhuan
Liu, Xiaoting
Yu, Cheng-han
description Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome. Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.
doi_str_mv 10.1038/s42003-020-0843-2
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377355291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhoMotlz7AG5kwI2b6EkyyUw2glStQkERXYfczMl1yiS5JnMv9LV8EJ_JDNPWKrhKyP-d_-TnJ-Qpg5cMRP-qtBxAUOBAoW8F5Q_IKRdaU6Fa_vDe_YSclXIFAExrrUT7mJwIzjpgDE5J-pyGVFLAxqcc7Dym2OxzCmnG0uwnW4JtAoZtthGbMR7tbowrZeNQH2bc5THSXz9Fg3FI7npOZSzNojfHsbh0KM2Xi7f01uMJeeTtVPDs5tyQb-_ffT3_QC8_XXw8f3NJXSsZp046roAPg1Wd7VFaVNyxlnmlPArZgQbZOi-4RI89oFKu98rZwWsn2HYrNuT16rs_bAMODuOc7WT2eQw2X5tkR_O3EsfvZpeOpoMOQLJq8OLGIKcfByyzCTUOTlMNUUMZLrpOSMn1gj7_B71KhxxrvIVSulWS95ViK-VyKiWjv_sMA7M0atZGTW3ULI3W4Q15dj_F3cRtfxXgK1CqFHeY_6z-v-tvNeOukA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376946528</pqid></control><display><type>article</type><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</creator><creatorcontrib>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</creatorcontrib><description>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome. Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0843-2</identifier><identifier>PMID: 32170110</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 38/109 ; 38/70 ; 38/89 ; 631/57/1461 ; 631/80/128 ; 631/80/79 ; Actin ; Actins - metabolism ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - metabolism ; Animals ; Biology ; Biomedical and Life Sciences ; Cell Adhesion ; Cell adhesion &amp; migration ; Cell Membrane - metabolism ; Cells, Cultured ; Clathrin ; Clathrin - genetics ; Clathrin - metabolism ; Cytoskeleton ; Dynamin ; Dynamin II - genetics ; Dynamin II - metabolism ; Endocytosis ; Endocytosis - genetics ; Fibroblasts - metabolism ; Gene Knockdown Techniques ; Humans ; Integrin beta3 - genetics ; Integrin beta3 - metabolism ; Invaginations ; Life Sciences ; Ligands ; Membranes, Artificial ; Mice ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Oligopeptides - metabolism ; Podosomes - metabolism ; Polymerization ; Rats ; Transfection ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Communications biology, 2020-03, Vol.3 (1), p.117-117, Article 117</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</citedby><cites>FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</cites><orcidid>0000-0003-0542-4374 ; 0000-0002-8821-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376946528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32170110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Zhou, Yuhuan</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Yu, Cheng-han</creatorcontrib><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome. Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>38/109</subject><subject>38/70</subject><subject>38/89</subject><subject>631/57/1461</subject><subject>631/80/128</subject><subject>631/80/79</subject><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Clathrin</subject><subject>Clathrin - genetics</subject><subject>Clathrin - metabolism</subject><subject>Cytoskeleton</subject><subject>Dynamin</subject><subject>Dynamin II - genetics</subject><subject>Dynamin II - metabolism</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Integrin beta3 - genetics</subject><subject>Integrin beta3 - metabolism</subject><subject>Invaginations</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Oligopeptides - metabolism</subject><subject>Podosomes - metabolism</subject><subject>Polymerization</subject><subject>Rats</subject><subject>Transfection</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kcFqFTEUhoMotlz7AG5kwI2b6EkyyUw2glStQkERXYfczMl1yiS5JnMv9LV8EJ_JDNPWKrhKyP-d_-TnJ-Qpg5cMRP-qtBxAUOBAoW8F5Q_IKRdaU6Fa_vDe_YSclXIFAExrrUT7mJwIzjpgDE5J-pyGVFLAxqcc7Dym2OxzCmnG0uwnW4JtAoZtthGbMR7tbowrZeNQH2bc5THSXz9Fg3FI7npOZSzNojfHsbh0KM2Xi7f01uMJeeTtVPDs5tyQb-_ffT3_QC8_XXw8f3NJXSsZp046roAPg1Wd7VFaVNyxlnmlPArZgQbZOi-4RI89oFKu98rZwWsn2HYrNuT16rs_bAMODuOc7WT2eQw2X5tkR_O3EsfvZpeOpoMOQLJq8OLGIKcfByyzCTUOTlMNUUMZLrpOSMn1gj7_B71KhxxrvIVSulWS95ViK-VyKiWjv_sMA7M0atZGTW3ULI3W4Q15dj_F3cRtfxXgK1CqFHeY_6z-v-tvNeOukA</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Cao, Fakun</creator><creator>Zhou, Yuhuan</creator><creator>Liu, Xiaoting</creator><creator>Yu, Cheng-han</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0542-4374</orcidid><orcidid>https://orcid.org/0000-0002-8821-8877</orcidid></search><sort><creationdate>20200313</creationdate><title>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</title><author>Cao, Fakun ; Zhou, Yuhuan ; Liu, Xiaoting ; Yu, Cheng-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>38/109</topic><topic>38/70</topic><topic>38/89</topic><topic>631/57/1461</topic><topic>631/80/128</topic><topic>631/80/79</topic><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Clathrin</topic><topic>Clathrin - genetics</topic><topic>Clathrin - metabolism</topic><topic>Cytoskeleton</topic><topic>Dynamin</topic><topic>Dynamin II - genetics</topic><topic>Dynamin II - metabolism</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Integrin beta3 - genetics</topic><topic>Integrin beta3 - metabolism</topic><topic>Invaginations</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Oligopeptides - metabolism</topic><topic>Podosomes - metabolism</topic><topic>Polymerization</topic><topic>Rats</topic><topic>Transfection</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Zhou, Yuhuan</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Yu, Cheng-han</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fakun</au><au>Zhou, Yuhuan</au><au>Liu, Xiaoting</au><au>Yu, Cheng-han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>117</spage><epage>117</epage><pages>117-117</pages><artnum>117</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome. Cao et al. investigate the mechanism of integrin-β3 endocytosis on podosomes from cells on viscous RGD- membranes. By using live imaging, the authors monitor actin and membrane dynamics during podosome formation and show that integrin-β3/RGD endocytosis is DAB2/clathrin mediated and dynamin-2 and BIN1 dependent.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32170110</pmid><doi>10.1038/s42003-020-0843-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0542-4374</orcidid><orcidid>https://orcid.org/0000-0002-8821-8877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-03, Vol.3 (1), p.117-117, Article 117
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070051
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/1
14/19
14/35
38/109
38/70
38/89
631/57/1461
631/80/128
631/80/79
Actin
Actins - metabolism
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - metabolism
Animals
Biology
Biomedical and Life Sciences
Cell Adhesion
Cell adhesion & migration
Cell Membrane - metabolism
Cells, Cultured
Clathrin
Clathrin - genetics
Clathrin - metabolism
Cytoskeleton
Dynamin
Dynamin II - genetics
Dynamin II - metabolism
Endocytosis
Endocytosis - genetics
Fibroblasts - metabolism
Gene Knockdown Techniques
Humans
Integrin beta3 - genetics
Integrin beta3 - metabolism
Invaginations
Life Sciences
Ligands
Membranes, Artificial
Mice
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Oligopeptides - metabolism
Podosomes - metabolism
Polymerization
Rats
Transfection
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Podosome%20formation%20promotes%20plasma%20membrane%20invagination%20and%20integrin-%CE%B23%20endocytosis%20on%20a%20viscous%20RGD-membrane&rft.jtitle=Communications%20biology&rft.au=Cao,%20Fakun&rft.date=2020-03-13&rft.volume=3&rft.issue=1&rft.spage=117&rft.epage=117&rft.pages=117-117&rft.artnum=117&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0843-2&rft_dat=%3Cproquest_pubme%3E2377355291%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4512-c5c2602dda67a8e5ae62c141f66fe35709054cf325efe80e66c8f6cadf9c31bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376946528&rft_id=info:pmid/32170110&rfr_iscdi=true