Loading…
A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus
All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming...
Saved in:
Published in: | The Journal of biological chemistry 2020-03, Vol.295 (11), p.3635-3651 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3 |
container_end_page | 3651 |
container_issue | 11 |
container_start_page | 3635 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Grolla, Ambra A. Miggiano, Riccardo Di Marino, Daniele Bianchi, Michele Gori, Alessandro Orsomando, Giuseppe Gaudino, Federica Galli, Ubaldina Del Grosso, Erika Mazzola, Francesca Angeletti, Carlo Guarneri, Martina Torretta, Simone Calabrò, Marta Boumya, Sara Fan, Xiaorui Colombo, Giorgia Travelli, Cristina Rocchio, Francesca Aronica, Eleonora Wohlschlegel, James A. Deaglio, Silvia Rizzi, Menico Genazzani, Armando A. Garavaglia, Silvia |
description | All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway. |
doi_str_mv | 10.1074/jbc.RA119.010571 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817486315</els_id><sourcerecordid>2347510417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</originalsourceid><addsrcrecordid>eNp1kVFrFDEQx4Mo9lp990n2UZC9JtnE3fggHK1thXqKKPgWZrOzvZS97JnJntxbv4Pf0E9i7NWiDw6EQOY_v8nMn7Fngs8Fr9XxdevmnxZCmDkXXNfiAZsJ3lRlpcXXh2zGuRSlkbo5YIdE1zyHMuIxO6iEaRqp-IzdLIrg3Zh8gLXvsNisRson-nak3ZAiBOoxAuHPmx_ni4-nF4UPKT-45MdQ0EQJfKAirbCgFJGo9KGbHHbF8v3yeLk4fVkQDFu4ymhIq--wy4BbeZjcgBM9YY96GAif3t1H7MvZ288nF-Xlh_N3J4vL0imjUilNV7dcSykbkGBUC9BqMK2rjYbKaFEp3vZc1X2POQBFj05Lg1UHRkJXHbE3e-5matfYOQx5uMFuol9D3NkRvP03E_zKXo1bW_P6lRQ6A17cAeL4bUJKdu3J4TBAwHEiKytVa8GVqLOU76UujkQR-_s2gtvfxtlsnL01zu6NyyXP__7efcEfp7Lg9V6AeUlbj9GS8xjypn1El2w3-v_TfwHK5q1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347510417</pqid></control><display><type>article</type><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</creator><creatorcontrib>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</creatorcontrib><description>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.010571</identifier><identifier>PMID: 31988240</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Line, Tumor ; Cell Nucleus - enzymology ; cell stress ; GAPDH ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism ; HeLa Cells ; Humans ; Kinetics ; melanoma ; Melanoma, Experimental - enzymology ; Melanoma, Experimental - pathology ; Metabolism ; Mice ; NAD - metabolism ; NAD biosynthesis ; NAD compartmentalization ; NAMPT ; nicotinamide adenine dinucleotide (NAD) ; nicotinamide mononucleotide (NMN) ; Nicotinamide Mononucleotide - chemistry ; Nicotinamide Mononucleotide - metabolism ; Nicotinamide Phosphoribosyltransferase - chemistry ; Nicotinamide Phosphoribosyltransferase - metabolism ; NIH 3T3 Cells ; NMN/NAD+ salvage pathway ; nucleus ; Protein Binding ; Protein Multimerization ; Protein Transport ; protein-protein interaction ; redox cycling ; Stress, Physiological</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3635-3651</ispartof><rights>2020 © 2020 Grolla et al.</rights><rights>2020 Grolla et al.</rights><rights>2020 Grolla et al. 2020 Grolla et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</citedby><cites>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</cites><orcidid>0000-0001-8494-1729 ; 0000-0001-6640-097X ; 0000-0002-2398-5944 ; 0000-0003-0233-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076215/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817486315$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31988240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Miggiano, Riccardo</creatorcontrib><creatorcontrib>Di Marino, Daniele</creatorcontrib><creatorcontrib>Bianchi, Michele</creatorcontrib><creatorcontrib>Gori, Alessandro</creatorcontrib><creatorcontrib>Orsomando, Giuseppe</creatorcontrib><creatorcontrib>Gaudino, Federica</creatorcontrib><creatorcontrib>Galli, Ubaldina</creatorcontrib><creatorcontrib>Del Grosso, Erika</creatorcontrib><creatorcontrib>Mazzola, Francesca</creatorcontrib><creatorcontrib>Angeletti, Carlo</creatorcontrib><creatorcontrib>Guarneri, Martina</creatorcontrib><creatorcontrib>Torretta, Simone</creatorcontrib><creatorcontrib>Calabrò, Marta</creatorcontrib><creatorcontrib>Boumya, Sara</creatorcontrib><creatorcontrib>Fan, Xiaorui</creatorcontrib><creatorcontrib>Colombo, Giorgia</creatorcontrib><creatorcontrib>Travelli, Cristina</creatorcontrib><creatorcontrib>Rocchio, Francesca</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Wohlschlegel, James A.</creatorcontrib><creatorcontrib>Deaglio, Silvia</creatorcontrib><creatorcontrib>Rizzi, Menico</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><creatorcontrib>Garavaglia, Silvia</creatorcontrib><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - enzymology</subject><subject>cell stress</subject><subject>GAPDH</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>melanoma</subject><subject>Melanoma, Experimental - enzymology</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>NAD - metabolism</subject><subject>NAD biosynthesis</subject><subject>NAD compartmentalization</subject><subject>NAMPT</subject><subject>nicotinamide adenine dinucleotide (NAD)</subject><subject>nicotinamide mononucleotide (NMN)</subject><subject>Nicotinamide Mononucleotide - chemistry</subject><subject>Nicotinamide Mononucleotide - metabolism</subject><subject>Nicotinamide Phosphoribosyltransferase - chemistry</subject><subject>Nicotinamide Phosphoribosyltransferase - metabolism</subject><subject>NIH 3T3 Cells</subject><subject>NMN/NAD+ salvage pathway</subject><subject>nucleus</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Transport</subject><subject>protein-protein interaction</subject><subject>redox cycling</subject><subject>Stress, Physiological</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEQx4Mo9lp990n2UZC9JtnE3fggHK1thXqKKPgWZrOzvZS97JnJntxbv4Pf0E9i7NWiDw6EQOY_v8nMn7Fngs8Fr9XxdevmnxZCmDkXXNfiAZsJ3lRlpcXXh2zGuRSlkbo5YIdE1zyHMuIxO6iEaRqp-IzdLIrg3Zh8gLXvsNisRson-nak3ZAiBOoxAuHPmx_ni4-nF4UPKT-45MdQ0EQJfKAirbCgFJGo9KGbHHbF8v3yeLk4fVkQDFu4ymhIq--wy4BbeZjcgBM9YY96GAif3t1H7MvZ288nF-Xlh_N3J4vL0imjUilNV7dcSykbkGBUC9BqMK2rjYbKaFEp3vZc1X2POQBFj05Lg1UHRkJXHbE3e-5matfYOQx5uMFuol9D3NkRvP03E_zKXo1bW_P6lRQ6A17cAeL4bUJKdu3J4TBAwHEiKytVa8GVqLOU76UujkQR-_s2gtvfxtlsnL01zu6NyyXP__7efcEfp7Lg9V6AeUlbj9GS8xjypn1El2w3-v_TfwHK5q1o</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Grolla, Ambra A.</creator><creator>Miggiano, Riccardo</creator><creator>Di Marino, Daniele</creator><creator>Bianchi, Michele</creator><creator>Gori, Alessandro</creator><creator>Orsomando, Giuseppe</creator><creator>Gaudino, Federica</creator><creator>Galli, Ubaldina</creator><creator>Del Grosso, Erika</creator><creator>Mazzola, Francesca</creator><creator>Angeletti, Carlo</creator><creator>Guarneri, Martina</creator><creator>Torretta, Simone</creator><creator>Calabrò, Marta</creator><creator>Boumya, Sara</creator><creator>Fan, Xiaorui</creator><creator>Colombo, Giorgia</creator><creator>Travelli, Cristina</creator><creator>Rocchio, Francesca</creator><creator>Aronica, Eleonora</creator><creator>Wohlschlegel, James A.</creator><creator>Deaglio, Silvia</creator><creator>Rizzi, Menico</creator><creator>Genazzani, Armando A.</creator><creator>Garavaglia, Silvia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8494-1729</orcidid><orcidid>https://orcid.org/0000-0001-6640-097X</orcidid><orcidid>https://orcid.org/0000-0002-2398-5944</orcidid><orcidid>https://orcid.org/0000-0003-0233-0700</orcidid></search><sort><creationdate>20200313</creationdate><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><author>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - enzymology</topic><topic>cell stress</topic><topic>GAPDH</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>melanoma</topic><topic>Melanoma, Experimental - enzymology</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>NAD - metabolism</topic><topic>NAD biosynthesis</topic><topic>NAD compartmentalization</topic><topic>NAMPT</topic><topic>nicotinamide adenine dinucleotide (NAD)</topic><topic>nicotinamide mononucleotide (NMN)</topic><topic>Nicotinamide Mononucleotide - chemistry</topic><topic>Nicotinamide Mononucleotide - metabolism</topic><topic>Nicotinamide Phosphoribosyltransferase - chemistry</topic><topic>Nicotinamide Phosphoribosyltransferase - metabolism</topic><topic>NIH 3T3 Cells</topic><topic>NMN/NAD+ salvage pathway</topic><topic>nucleus</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Transport</topic><topic>protein-protein interaction</topic><topic>redox cycling</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Miggiano, Riccardo</creatorcontrib><creatorcontrib>Di Marino, Daniele</creatorcontrib><creatorcontrib>Bianchi, Michele</creatorcontrib><creatorcontrib>Gori, Alessandro</creatorcontrib><creatorcontrib>Orsomando, Giuseppe</creatorcontrib><creatorcontrib>Gaudino, Federica</creatorcontrib><creatorcontrib>Galli, Ubaldina</creatorcontrib><creatorcontrib>Del Grosso, Erika</creatorcontrib><creatorcontrib>Mazzola, Francesca</creatorcontrib><creatorcontrib>Angeletti, Carlo</creatorcontrib><creatorcontrib>Guarneri, Martina</creatorcontrib><creatorcontrib>Torretta, Simone</creatorcontrib><creatorcontrib>Calabrò, Marta</creatorcontrib><creatorcontrib>Boumya, Sara</creatorcontrib><creatorcontrib>Fan, Xiaorui</creatorcontrib><creatorcontrib>Colombo, Giorgia</creatorcontrib><creatorcontrib>Travelli, Cristina</creatorcontrib><creatorcontrib>Rocchio, Francesca</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Wohlschlegel, James A.</creatorcontrib><creatorcontrib>Deaglio, Silvia</creatorcontrib><creatorcontrib>Rizzi, Menico</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><creatorcontrib>Garavaglia, Silvia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grolla, Ambra A.</au><au>Miggiano, Riccardo</au><au>Di Marino, Daniele</au><au>Bianchi, Michele</au><au>Gori, Alessandro</au><au>Orsomando, Giuseppe</au><au>Gaudino, Federica</au><au>Galli, Ubaldina</au><au>Del Grosso, Erika</au><au>Mazzola, Francesca</au><au>Angeletti, Carlo</au><au>Guarneri, Martina</au><au>Torretta, Simone</au><au>Calabrò, Marta</au><au>Boumya, Sara</au><au>Fan, Xiaorui</au><au>Colombo, Giorgia</au><au>Travelli, Cristina</au><au>Rocchio, Francesca</au><au>Aronica, Eleonora</au><au>Wohlschlegel, James A.</au><au>Deaglio, Silvia</au><au>Rizzi, Menico</au><au>Genazzani, Armando A.</au><au>Garavaglia, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>295</volume><issue>11</issue><spage>3635</spage><epage>3651</epage><pages>3635-3651</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31988240</pmid><doi>10.1074/jbc.RA119.010571</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8494-1729</orcidid><orcidid>https://orcid.org/0000-0001-6640-097X</orcidid><orcidid>https://orcid.org/0000-0002-2398-5944</orcidid><orcidid>https://orcid.org/0000-0003-0233-0700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3635-3651 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076215 |
source | Open Access: PubMed Central; ScienceDirect® |
subjects | Animals Cell Line, Tumor Cell Nucleus - enzymology cell stress GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism HeLa Cells Humans Kinetics melanoma Melanoma, Experimental - enzymology Melanoma, Experimental - pathology Metabolism Mice NAD - metabolism NAD biosynthesis NAD compartmentalization NAMPT nicotinamide adenine dinucleotide (NAD) nicotinamide mononucleotide (NMN) Nicotinamide Mononucleotide - chemistry Nicotinamide Mononucleotide - metabolism Nicotinamide Phosphoribosyltransferase - chemistry Nicotinamide Phosphoribosyltransferase - metabolism NIH 3T3 Cells NMN/NAD+ salvage pathway nucleus Protein Binding Protein Multimerization Protein Transport protein-protein interaction redox cycling Stress, Physiological |
title | A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nicotinamide%20phosphoribosyltransferase%E2%80%93GAPDH%20interaction%20sustains%20the%20stress-induced%20NMN/NAD+%20salvage%20pathway%20in%20the%20nucleus&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Grolla,%20Ambra%20A.&rft.date=2020-03-13&rft.volume=295&rft.issue=11&rft.spage=3635&rft.epage=3651&rft.pages=3635-3651&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.010571&rft_dat=%3Cproquest_pubme%3E2347510417%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2347510417&rft_id=info:pmid/31988240&rfr_iscdi=true |