Loading…

A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus

All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-03, Vol.295 (11), p.3635-3651
Main Authors: Grolla, Ambra A., Miggiano, Riccardo, Di Marino, Daniele, Bianchi, Michele, Gori, Alessandro, Orsomando, Giuseppe, Gaudino, Federica, Galli, Ubaldina, Del Grosso, Erika, Mazzola, Francesca, Angeletti, Carlo, Guarneri, Martina, Torretta, Simone, Calabrò, Marta, Boumya, Sara, Fan, Xiaorui, Colombo, Giorgia, Travelli, Cristina, Rocchio, Francesca, Aronica, Eleonora, Wohlschlegel, James A., Deaglio, Silvia, Rizzi, Menico, Genazzani, Armando A., Garavaglia, Silvia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3
cites cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3
container_end_page 3651
container_issue 11
container_start_page 3635
container_title The Journal of biological chemistry
container_volume 295
creator Grolla, Ambra A.
Miggiano, Riccardo
Di Marino, Daniele
Bianchi, Michele
Gori, Alessandro
Orsomando, Giuseppe
Gaudino, Federica
Galli, Ubaldina
Del Grosso, Erika
Mazzola, Francesca
Angeletti, Carlo
Guarneri, Martina
Torretta, Simone
Calabrò, Marta
Boumya, Sara
Fan, Xiaorui
Colombo, Giorgia
Travelli, Cristina
Rocchio, Francesca
Aronica, Eleonora
Wohlschlegel, James A.
Deaglio, Silvia
Rizzi, Menico
Genazzani, Armando A.
Garavaglia, Silvia
description All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.
doi_str_mv 10.1074/jbc.RA119.010571
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817486315</els_id><sourcerecordid>2347510417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</originalsourceid><addsrcrecordid>eNp1kVFrFDEQx4Mo9lp990n2UZC9JtnE3fggHK1thXqKKPgWZrOzvZS97JnJntxbv4Pf0E9i7NWiDw6EQOY_v8nMn7Fngs8Fr9XxdevmnxZCmDkXXNfiAZsJ3lRlpcXXh2zGuRSlkbo5YIdE1zyHMuIxO6iEaRqp-IzdLIrg3Zh8gLXvsNisRson-nak3ZAiBOoxAuHPmx_ni4-nF4UPKT-45MdQ0EQJfKAirbCgFJGo9KGbHHbF8v3yeLk4fVkQDFu4ymhIq--wy4BbeZjcgBM9YY96GAif3t1H7MvZ288nF-Xlh_N3J4vL0imjUilNV7dcSykbkGBUC9BqMK2rjYbKaFEp3vZc1X2POQBFj05Lg1UHRkJXHbE3e-5matfYOQx5uMFuol9D3NkRvP03E_zKXo1bW_P6lRQ6A17cAeL4bUJKdu3J4TBAwHEiKytVa8GVqLOU76UujkQR-_s2gtvfxtlsnL01zu6NyyXP__7efcEfp7Lg9V6AeUlbj9GS8xjypn1El2w3-v_TfwHK5q1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347510417</pqid></control><display><type>article</type><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</creator><creatorcontrib>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</creatorcontrib><description>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.010571</identifier><identifier>PMID: 31988240</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Line, Tumor ; Cell Nucleus - enzymology ; cell stress ; GAPDH ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism ; HeLa Cells ; Humans ; Kinetics ; melanoma ; Melanoma, Experimental - enzymology ; Melanoma, Experimental - pathology ; Metabolism ; Mice ; NAD - metabolism ; NAD biosynthesis ; NAD compartmentalization ; NAMPT ; nicotinamide adenine dinucleotide (NAD) ; nicotinamide mononucleotide (NMN) ; Nicotinamide Mononucleotide - chemistry ; Nicotinamide Mononucleotide - metabolism ; Nicotinamide Phosphoribosyltransferase - chemistry ; Nicotinamide Phosphoribosyltransferase - metabolism ; NIH 3T3 Cells ; NMN/NAD+ salvage pathway ; nucleus ; Protein Binding ; Protein Multimerization ; Protein Transport ; protein-protein interaction ; redox cycling ; Stress, Physiological</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3635-3651</ispartof><rights>2020 © 2020 Grolla et al.</rights><rights>2020 Grolla et al.</rights><rights>2020 Grolla et al. 2020 Grolla et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</citedby><cites>FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</cites><orcidid>0000-0001-8494-1729 ; 0000-0001-6640-097X ; 0000-0002-2398-5944 ; 0000-0003-0233-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076215/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817486315$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31988240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Miggiano, Riccardo</creatorcontrib><creatorcontrib>Di Marino, Daniele</creatorcontrib><creatorcontrib>Bianchi, Michele</creatorcontrib><creatorcontrib>Gori, Alessandro</creatorcontrib><creatorcontrib>Orsomando, Giuseppe</creatorcontrib><creatorcontrib>Gaudino, Federica</creatorcontrib><creatorcontrib>Galli, Ubaldina</creatorcontrib><creatorcontrib>Del Grosso, Erika</creatorcontrib><creatorcontrib>Mazzola, Francesca</creatorcontrib><creatorcontrib>Angeletti, Carlo</creatorcontrib><creatorcontrib>Guarneri, Martina</creatorcontrib><creatorcontrib>Torretta, Simone</creatorcontrib><creatorcontrib>Calabrò, Marta</creatorcontrib><creatorcontrib>Boumya, Sara</creatorcontrib><creatorcontrib>Fan, Xiaorui</creatorcontrib><creatorcontrib>Colombo, Giorgia</creatorcontrib><creatorcontrib>Travelli, Cristina</creatorcontrib><creatorcontrib>Rocchio, Francesca</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Wohlschlegel, James A.</creatorcontrib><creatorcontrib>Deaglio, Silvia</creatorcontrib><creatorcontrib>Rizzi, Menico</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><creatorcontrib>Garavaglia, Silvia</creatorcontrib><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - enzymology</subject><subject>cell stress</subject><subject>GAPDH</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>melanoma</subject><subject>Melanoma, Experimental - enzymology</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>NAD - metabolism</subject><subject>NAD biosynthesis</subject><subject>NAD compartmentalization</subject><subject>NAMPT</subject><subject>nicotinamide adenine dinucleotide (NAD)</subject><subject>nicotinamide mononucleotide (NMN)</subject><subject>Nicotinamide Mononucleotide - chemistry</subject><subject>Nicotinamide Mononucleotide - metabolism</subject><subject>Nicotinamide Phosphoribosyltransferase - chemistry</subject><subject>Nicotinamide Phosphoribosyltransferase - metabolism</subject><subject>NIH 3T3 Cells</subject><subject>NMN/NAD+ salvage pathway</subject><subject>nucleus</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Transport</subject><subject>protein-protein interaction</subject><subject>redox cycling</subject><subject>Stress, Physiological</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEQx4Mo9lp990n2UZC9JtnE3fggHK1thXqKKPgWZrOzvZS97JnJntxbv4Pf0E9i7NWiDw6EQOY_v8nMn7Fngs8Fr9XxdevmnxZCmDkXXNfiAZsJ3lRlpcXXh2zGuRSlkbo5YIdE1zyHMuIxO6iEaRqp-IzdLIrg3Zh8gLXvsNisRson-nak3ZAiBOoxAuHPmx_ni4-nF4UPKT-45MdQ0EQJfKAirbCgFJGo9KGbHHbF8v3yeLk4fVkQDFu4ymhIq--wy4BbeZjcgBM9YY96GAif3t1H7MvZ288nF-Xlh_N3J4vL0imjUilNV7dcSykbkGBUC9BqMK2rjYbKaFEp3vZc1X2POQBFj05Lg1UHRkJXHbE3e-5matfYOQx5uMFuol9D3NkRvP03E_zKXo1bW_P6lRQ6A17cAeL4bUJKdu3J4TBAwHEiKytVa8GVqLOU76UujkQR-_s2gtvfxtlsnL01zu6NyyXP__7efcEfp7Lg9V6AeUlbj9GS8xjypn1El2w3-v_TfwHK5q1o</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Grolla, Ambra A.</creator><creator>Miggiano, Riccardo</creator><creator>Di Marino, Daniele</creator><creator>Bianchi, Michele</creator><creator>Gori, Alessandro</creator><creator>Orsomando, Giuseppe</creator><creator>Gaudino, Federica</creator><creator>Galli, Ubaldina</creator><creator>Del Grosso, Erika</creator><creator>Mazzola, Francesca</creator><creator>Angeletti, Carlo</creator><creator>Guarneri, Martina</creator><creator>Torretta, Simone</creator><creator>Calabrò, Marta</creator><creator>Boumya, Sara</creator><creator>Fan, Xiaorui</creator><creator>Colombo, Giorgia</creator><creator>Travelli, Cristina</creator><creator>Rocchio, Francesca</creator><creator>Aronica, Eleonora</creator><creator>Wohlschlegel, James A.</creator><creator>Deaglio, Silvia</creator><creator>Rizzi, Menico</creator><creator>Genazzani, Armando A.</creator><creator>Garavaglia, Silvia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8494-1729</orcidid><orcidid>https://orcid.org/0000-0001-6640-097X</orcidid><orcidid>https://orcid.org/0000-0002-2398-5944</orcidid><orcidid>https://orcid.org/0000-0003-0233-0700</orcidid></search><sort><creationdate>20200313</creationdate><title>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</title><author>Grolla, Ambra A. ; Miggiano, Riccardo ; Di Marino, Daniele ; Bianchi, Michele ; Gori, Alessandro ; Orsomando, Giuseppe ; Gaudino, Federica ; Galli, Ubaldina ; Del Grosso, Erika ; Mazzola, Francesca ; Angeletti, Carlo ; Guarneri, Martina ; Torretta, Simone ; Calabrò, Marta ; Boumya, Sara ; Fan, Xiaorui ; Colombo, Giorgia ; Travelli, Cristina ; Rocchio, Francesca ; Aronica, Eleonora ; Wohlschlegel, James A. ; Deaglio, Silvia ; Rizzi, Menico ; Genazzani, Armando A. ; Garavaglia, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - enzymology</topic><topic>cell stress</topic><topic>GAPDH</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>melanoma</topic><topic>Melanoma, Experimental - enzymology</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>NAD - metabolism</topic><topic>NAD biosynthesis</topic><topic>NAD compartmentalization</topic><topic>NAMPT</topic><topic>nicotinamide adenine dinucleotide (NAD)</topic><topic>nicotinamide mononucleotide (NMN)</topic><topic>Nicotinamide Mononucleotide - chemistry</topic><topic>Nicotinamide Mononucleotide - metabolism</topic><topic>Nicotinamide Phosphoribosyltransferase - chemistry</topic><topic>Nicotinamide Phosphoribosyltransferase - metabolism</topic><topic>NIH 3T3 Cells</topic><topic>NMN/NAD+ salvage pathway</topic><topic>nucleus</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Transport</topic><topic>protein-protein interaction</topic><topic>redox cycling</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Miggiano, Riccardo</creatorcontrib><creatorcontrib>Di Marino, Daniele</creatorcontrib><creatorcontrib>Bianchi, Michele</creatorcontrib><creatorcontrib>Gori, Alessandro</creatorcontrib><creatorcontrib>Orsomando, Giuseppe</creatorcontrib><creatorcontrib>Gaudino, Federica</creatorcontrib><creatorcontrib>Galli, Ubaldina</creatorcontrib><creatorcontrib>Del Grosso, Erika</creatorcontrib><creatorcontrib>Mazzola, Francesca</creatorcontrib><creatorcontrib>Angeletti, Carlo</creatorcontrib><creatorcontrib>Guarneri, Martina</creatorcontrib><creatorcontrib>Torretta, Simone</creatorcontrib><creatorcontrib>Calabrò, Marta</creatorcontrib><creatorcontrib>Boumya, Sara</creatorcontrib><creatorcontrib>Fan, Xiaorui</creatorcontrib><creatorcontrib>Colombo, Giorgia</creatorcontrib><creatorcontrib>Travelli, Cristina</creatorcontrib><creatorcontrib>Rocchio, Francesca</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Wohlschlegel, James A.</creatorcontrib><creatorcontrib>Deaglio, Silvia</creatorcontrib><creatorcontrib>Rizzi, Menico</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><creatorcontrib>Garavaglia, Silvia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grolla, Ambra A.</au><au>Miggiano, Riccardo</au><au>Di Marino, Daniele</au><au>Bianchi, Michele</au><au>Gori, Alessandro</au><au>Orsomando, Giuseppe</au><au>Gaudino, Federica</au><au>Galli, Ubaldina</au><au>Del Grosso, Erika</au><au>Mazzola, Francesca</au><au>Angeletti, Carlo</au><au>Guarneri, Martina</au><au>Torretta, Simone</au><au>Calabrò, Marta</au><au>Boumya, Sara</au><au>Fan, Xiaorui</au><au>Colombo, Giorgia</au><au>Travelli, Cristina</au><au>Rocchio, Francesca</au><au>Aronica, Eleonora</au><au>Wohlschlegel, James A.</au><au>Deaglio, Silvia</au><au>Rizzi, Menico</au><au>Genazzani, Armando A.</au><au>Garavaglia, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>295</volume><issue>11</issue><spage>3635</spage><epage>3651</epage><pages>3635-3651</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31988240</pmid><doi>10.1074/jbc.RA119.010571</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8494-1729</orcidid><orcidid>https://orcid.org/0000-0001-6640-097X</orcidid><orcidid>https://orcid.org/0000-0002-2398-5944</orcidid><orcidid>https://orcid.org/0000-0003-0233-0700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3635-3651
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076215
source Open Access: PubMed Central; ScienceDirect®
subjects Animals
Cell Line, Tumor
Cell Nucleus - enzymology
cell stress
GAPDH
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism
HeLa Cells
Humans
Kinetics
melanoma
Melanoma, Experimental - enzymology
Melanoma, Experimental - pathology
Metabolism
Mice
NAD - metabolism
NAD biosynthesis
NAD compartmentalization
NAMPT
nicotinamide adenine dinucleotide (NAD)
nicotinamide mononucleotide (NMN)
Nicotinamide Mononucleotide - chemistry
Nicotinamide Mononucleotide - metabolism
Nicotinamide Phosphoribosyltransferase - chemistry
Nicotinamide Phosphoribosyltransferase - metabolism
NIH 3T3 Cells
NMN/NAD+ salvage pathway
nucleus
Protein Binding
Protein Multimerization
Protein Transport
protein-protein interaction
redox cycling
Stress, Physiological
title A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nicotinamide%20phosphoribosyltransferase%E2%80%93GAPDH%20interaction%20sustains%20the%20stress-induced%20NMN/NAD+%20salvage%20pathway%20in%20the%20nucleus&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Grolla,%20Ambra%20A.&rft.date=2020-03-13&rft.volume=295&rft.issue=11&rft.spage=3635&rft.epage=3651&rft.pages=3635-3651&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.010571&rft_dat=%3Cproquest_pubme%3E2347510417%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-29d7b052228a2a94baab5a9bc795a3951340bf047ffeeeeae1fec529e3da92ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2347510417&rft_id=info:pmid/31988240&rfr_iscdi=true