Loading…

Microstructure and Residual Stresses of AA2519 Friction Stir Welded Joints under Different Heat Treatment Conditions

The aim of this research was to investigate the effect of different heat treatment conditions of AA2519 friction stir welded joints on their microstructure and residual stresses. The following welding parameters have been used: 500 rpm tool rotation speed, 150 mm/min tool traverse speed, tool tilt a...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-02, Vol.13 (4), p.834
Main Authors: Śnieżek, Lucjan, Kosturek, Robert, Wachowski, Marcin, Kania, Bogusz
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this research was to investigate the effect of different heat treatment conditions of AA2519 friction stir welded joints on their microstructure and residual stresses. The following welding parameters have been used: 500 rpm tool rotation speed, 150 mm/min tool traverse speed, tool tilt angle 2°, pressure force 17 kN. The welded material was investigated in three different configurations: HT0, HT1, and HT2. The first type of weld (HT-0) was made using AA2519 alloy in non-precipitation hardened state and examined in such condition. The second type of weld (HT-1) has been performed on AA2519-T62, that corresponds to precipitation hardening condition. The last type of weld (HT2) was performed on annealed AA2519 and the obtained welds were subjected to the post-weld precipitation hardening process. The heat treatment was carried out in two stages: solution heat treatment (530°C/2h + cooling in cold water) and aging (165 C/10h). Residual stresses were measured using X-Ray diffraction patterns obtained from Bruker D8 Discover X-Ray diffractometer utilizing the concepts of Euler cradle and polycapillary primary beam optics. The conducted research indicates that the best material properties: homogenous microstructure and uniform distribution of microhardness and compressive state of residual stresses were obtained for the HT-2 series samples subjected to heat treatment after the friction stir welding (FSW) process.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13040834