Loading…
Experimental and Numerical Simulation to Study the Reduction of Welding Residual Stress by Ultrasonic Impact Treatment
In this study, the effects of ultrasonic impact treatment (UIT) on the residual stress in a repair welding joint are investigated by experimental and finite element methods. A three-dimensional numerical analysis approach including a thermomechanical-coupled welding simulation and dynamic elastic-pl...
Saved in:
Published in: | Materials 2020-02, Vol.13 (4), p.837 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the effects of ultrasonic impact treatment (UIT) on the residual stress in a repair welding joint are investigated by experimental and finite element methods. A three-dimensional numerical analysis approach including a thermomechanical-coupled welding simulation and dynamic elastic-plastic UIT simulation is developed, which has been validated by X-ray diffraction measurement and indentation strain method. The results show that longitudinal residual stresses basically turned into the small tensile stress state from the large tensile stress state, and transverse residual stresses have mainly turned into compressive stresses from large tensile stress after the UIT. In the thickness direction, the average decrease of longitudinal residual stress is 259.9 MPa, which is larger than the 149.1 MPa of transverse residual stress. The calculated residual stress distribution after the UIT of the thin plate is compared with that of the thick plate in the literature, with the results showing the stress accumulation layer inside the thick plate. The simulation results show that the elastic strains are decreased slightly and the equivalent plastic strain is increased markedly after UIT, which explains the mechanism of residual stress relaxation. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13040837 |