Loading…

Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment

The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Su...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-03, Vol.13 (5), p.1185
Main Authors: Bolshakov, Pavel, Raginov, Ivan, Egorov, Vladislav, Kashapova, Regina, Kashapov, Ramil, Baltina, Tatyana, Sachenkov, Oskar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793
cites cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793
container_end_page
container_issue 5
container_start_page 1185
container_title Materials
container_volume 13
creator Bolshakov, Pavel
Raginov, Ivan
Egorov, Vladislav
Kashapova, Regina
Kashapov, Ramil
Baltina, Tatyana
Sachenkov, Oskar
description The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.
doi_str_mv 10.3390/ma13051185
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376241558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</originalsourceid><addsrcrecordid>eNpdkV9PHCEUxUmjqUb3xQ_QkPhiTFb5Owx9aGK3a2uyzb7UZ8IwzIqZgSkwjfrpy6pVKy9wub8cDvcAcITRGaUSnQ8aU8QxrvkHsI-lrOZYMrbz5rwHZindorIoxTWRH8EeJZjzmst90H6zyW081L6F6zG7wT3o7IKHK52zMxYufRvGGFK-KWCCXYhwFfwGfg3eps_wp_ZTp02eoiuXW5VF77wzuofLu9FGN1ifD8Fup_tkZ8_7Abi-XP5a_Jiv1t-vFheruWGoyvO6qgVmyJJOGmZNy7GuqKgFLY1SWN02DbKiaRpMGGNCEq55qWWLSSWFpAfgy5PuODWDbU15OupejcWFjvcqaKf-73h3ozbhjxKo5kigInDyLBDD78mmrAaXjO177W2YkiJUVIRtZ1fQ43fobZiiL997pFBFaMUKdfpEmTLCFG33YgYjtc1PveZX4E9v7b-g_9KifwHJNZXz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376062364</pqid></control><display><type>article</type><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</creator><creatorcontrib>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</creatorcontrib><description>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13051185</identifier><identifier>PMID: 32155859</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Algorithms ; Animal welfare ; Bioethics ; Biomedical materials ; Bones ; Boundary conditions ; Construction ; Design optimization ; Experiments ; Finite element method ; Geometry ; Influence functions ; Joint surgery ; Lasers ; Lattice design ; Mechanical properties ; Parameters ; Quality ; Stainless steel ; Stress concentration ; Stress distribution ; Stress state ; Transplants &amp; implants</subject><ispartof>Materials, 2020-03, Vol.13 (5), p.1185</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</citedby><cites>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</cites><orcidid>0000-0003-3798-7665 ; 0000-0002-9691-2009 ; 0000-0002-8554-2938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2376062364/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376062364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32155859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolshakov, Pavel</creatorcontrib><creatorcontrib>Raginov, Ivan</creatorcontrib><creatorcontrib>Egorov, Vladislav</creatorcontrib><creatorcontrib>Kashapova, Regina</creatorcontrib><creatorcontrib>Kashapov, Ramil</creatorcontrib><creatorcontrib>Baltina, Tatyana</creatorcontrib><creatorcontrib>Sachenkov, Oskar</creatorcontrib><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</description><subject>Additive manufacturing</subject><subject>Algorithms</subject><subject>Animal welfare</subject><subject>Bioethics</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Boundary conditions</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Influence functions</subject><subject>Joint surgery</subject><subject>Lasers</subject><subject>Lattice design</subject><subject>Mechanical properties</subject><subject>Parameters</subject><subject>Quality</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress state</subject><subject>Transplants &amp; implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV9PHCEUxUmjqUb3xQ_QkPhiTFb5Owx9aGK3a2uyzb7UZ8IwzIqZgSkwjfrpy6pVKy9wub8cDvcAcITRGaUSnQ8aU8QxrvkHsI-lrOZYMrbz5rwHZindorIoxTWRH8EeJZjzmst90H6zyW081L6F6zG7wT3o7IKHK52zMxYufRvGGFK-KWCCXYhwFfwGfg3eps_wp_ZTp02eoiuXW5VF77wzuofLu9FGN1ifD8Fup_tkZ8_7Abi-XP5a_Jiv1t-vFheruWGoyvO6qgVmyJJOGmZNy7GuqKgFLY1SWN02DbKiaRpMGGNCEq55qWWLSSWFpAfgy5PuODWDbU15OupejcWFjvcqaKf-73h3ozbhjxKo5kigInDyLBDD78mmrAaXjO177W2YkiJUVIRtZ1fQ43fobZiiL997pFBFaMUKdfpEmTLCFG33YgYjtc1PveZX4E9v7b-g_9KifwHJNZXz</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Bolshakov, Pavel</creator><creator>Raginov, Ivan</creator><creator>Egorov, Vladislav</creator><creator>Kashapova, Regina</creator><creator>Kashapov, Ramil</creator><creator>Baltina, Tatyana</creator><creator>Sachenkov, Oskar</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3798-7665</orcidid><orcidid>https://orcid.org/0000-0002-9691-2009</orcidid><orcidid>https://orcid.org/0000-0002-8554-2938</orcidid></search><sort><creationdate>20200306</creationdate><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><author>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Algorithms</topic><topic>Animal welfare</topic><topic>Bioethics</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Boundary conditions</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Influence functions</topic><topic>Joint surgery</topic><topic>Lasers</topic><topic>Lattice design</topic><topic>Mechanical properties</topic><topic>Parameters</topic><topic>Quality</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress state</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolshakov, Pavel</creatorcontrib><creatorcontrib>Raginov, Ivan</creatorcontrib><creatorcontrib>Egorov, Vladislav</creatorcontrib><creatorcontrib>Kashapova, Regina</creatorcontrib><creatorcontrib>Kashapov, Ramil</creatorcontrib><creatorcontrib>Baltina, Tatyana</creatorcontrib><creatorcontrib>Sachenkov, Oskar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolshakov, Pavel</au><au>Raginov, Ivan</au><au>Egorov, Vladislav</au><au>Kashapova, Regina</au><au>Kashapov, Ramil</au><au>Baltina, Tatyana</au><au>Sachenkov, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1185</spage><pages>1185-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32155859</pmid><doi>10.3390/ma13051185</doi><orcidid>https://orcid.org/0000-0003-3798-7665</orcidid><orcidid>https://orcid.org/0000-0002-9691-2009</orcidid><orcidid>https://orcid.org/0000-0002-8554-2938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-03, Vol.13 (5), p.1185
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085070
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additive manufacturing
Algorithms
Animal welfare
Bioethics
Biomedical materials
Bones
Boundary conditions
Construction
Design optimization
Experiments
Finite element method
Geometry
Influence functions
Joint surgery
Lasers
Lattice design
Mechanical properties
Parameters
Quality
Stainless steel
Stress concentration
Stress distribution
Stress state
Transplants & implants
title Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20Lattice%20Endoprosthesis%20for%20Long%20Bones:%20Manufacturing%20and%20Clinical%20Experiment&rft.jtitle=Materials&rft.au=Bolshakov,%20Pavel&rft.date=2020-03-06&rft.volume=13&rft.issue=5&rft.spage=1185&rft.pages=1185-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13051185&rft_dat=%3Cproquest_pubme%3E2376241558%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376062364&rft_id=info:pmid/32155859&rfr_iscdi=true