Loading…
Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment
The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Su...
Saved in:
Published in: | Materials 2020-03, Vol.13 (5), p.1185 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793 |
container_end_page | |
container_issue | 5 |
container_start_page | 1185 |
container_title | Materials |
container_volume | 13 |
creator | Bolshakov, Pavel Raginov, Ivan Egorov, Vladislav Kashapova, Regina Kashapov, Ramil Baltina, Tatyana Sachenkov, Oskar |
description | The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented. |
doi_str_mv | 10.3390/ma13051185 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376241558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</originalsourceid><addsrcrecordid>eNpdkV9PHCEUxUmjqUb3xQ_QkPhiTFb5Owx9aGK3a2uyzb7UZ8IwzIqZgSkwjfrpy6pVKy9wub8cDvcAcITRGaUSnQ8aU8QxrvkHsI-lrOZYMrbz5rwHZindorIoxTWRH8EeJZjzmst90H6zyW081L6F6zG7wT3o7IKHK52zMxYufRvGGFK-KWCCXYhwFfwGfg3eps_wp_ZTp02eoiuXW5VF77wzuofLu9FGN1ifD8Fup_tkZ8_7Abi-XP5a_Jiv1t-vFheruWGoyvO6qgVmyJJOGmZNy7GuqKgFLY1SWN02DbKiaRpMGGNCEq55qWWLSSWFpAfgy5PuODWDbU15OupejcWFjvcqaKf-73h3ozbhjxKo5kigInDyLBDD78mmrAaXjO177W2YkiJUVIRtZ1fQ43fobZiiL997pFBFaMUKdfpEmTLCFG33YgYjtc1PveZX4E9v7b-g_9KifwHJNZXz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376062364</pqid></control><display><type>article</type><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</creator><creatorcontrib>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</creatorcontrib><description>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13051185</identifier><identifier>PMID: 32155859</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Algorithms ; Animal welfare ; Bioethics ; Biomedical materials ; Bones ; Boundary conditions ; Construction ; Design optimization ; Experiments ; Finite element method ; Geometry ; Influence functions ; Joint surgery ; Lasers ; Lattice design ; Mechanical properties ; Parameters ; Quality ; Stainless steel ; Stress concentration ; Stress distribution ; Stress state ; Transplants & implants</subject><ispartof>Materials, 2020-03, Vol.13 (5), p.1185</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</citedby><cites>FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</cites><orcidid>0000-0003-3798-7665 ; 0000-0002-9691-2009 ; 0000-0002-8554-2938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2376062364/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376062364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32155859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolshakov, Pavel</creatorcontrib><creatorcontrib>Raginov, Ivan</creatorcontrib><creatorcontrib>Egorov, Vladislav</creatorcontrib><creatorcontrib>Kashapova, Regina</creatorcontrib><creatorcontrib>Kashapov, Ramil</creatorcontrib><creatorcontrib>Baltina, Tatyana</creatorcontrib><creatorcontrib>Sachenkov, Oskar</creatorcontrib><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</description><subject>Additive manufacturing</subject><subject>Algorithms</subject><subject>Animal welfare</subject><subject>Bioethics</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Boundary conditions</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Influence functions</subject><subject>Joint surgery</subject><subject>Lasers</subject><subject>Lattice design</subject><subject>Mechanical properties</subject><subject>Parameters</subject><subject>Quality</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress state</subject><subject>Transplants & implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV9PHCEUxUmjqUb3xQ_QkPhiTFb5Owx9aGK3a2uyzb7UZ8IwzIqZgSkwjfrpy6pVKy9wub8cDvcAcITRGaUSnQ8aU8QxrvkHsI-lrOZYMrbz5rwHZindorIoxTWRH8EeJZjzmst90H6zyW081L6F6zG7wT3o7IKHK52zMxYufRvGGFK-KWCCXYhwFfwGfg3eps_wp_ZTp02eoiuXW5VF77wzuofLu9FGN1ifD8Fup_tkZ8_7Abi-XP5a_Jiv1t-vFheruWGoyvO6qgVmyJJOGmZNy7GuqKgFLY1SWN02DbKiaRpMGGNCEq55qWWLSSWFpAfgy5PuODWDbU15OupejcWFjvcqaKf-73h3ozbhjxKo5kigInDyLBDD78mmrAaXjO177W2YkiJUVIRtZ1fQ43fobZiiL997pFBFaMUKdfpEmTLCFG33YgYjtc1PveZX4E9v7b-g_9KifwHJNZXz</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Bolshakov, Pavel</creator><creator>Raginov, Ivan</creator><creator>Egorov, Vladislav</creator><creator>Kashapova, Regina</creator><creator>Kashapov, Ramil</creator><creator>Baltina, Tatyana</creator><creator>Sachenkov, Oskar</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3798-7665</orcidid><orcidid>https://orcid.org/0000-0002-9691-2009</orcidid><orcidid>https://orcid.org/0000-0002-8554-2938</orcidid></search><sort><creationdate>20200306</creationdate><title>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</title><author>Bolshakov, Pavel ; Raginov, Ivan ; Egorov, Vladislav ; Kashapova, Regina ; Kashapov, Ramil ; Baltina, Tatyana ; Sachenkov, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Algorithms</topic><topic>Animal welfare</topic><topic>Bioethics</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Boundary conditions</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Influence functions</topic><topic>Joint surgery</topic><topic>Lasers</topic><topic>Lattice design</topic><topic>Mechanical properties</topic><topic>Parameters</topic><topic>Quality</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress state</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolshakov, Pavel</creatorcontrib><creatorcontrib>Raginov, Ivan</creatorcontrib><creatorcontrib>Egorov, Vladislav</creatorcontrib><creatorcontrib>Kashapova, Regina</creatorcontrib><creatorcontrib>Kashapov, Ramil</creatorcontrib><creatorcontrib>Baltina, Tatyana</creatorcontrib><creatorcontrib>Sachenkov, Oskar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolshakov, Pavel</au><au>Raginov, Ivan</au><au>Egorov, Vladislav</au><au>Kashapova, Regina</au><au>Kashapov, Ramil</au><au>Baltina, Tatyana</au><au>Sachenkov, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1185</spage><pages>1185-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32155859</pmid><doi>10.3390/ma13051185</doi><orcidid>https://orcid.org/0000-0003-3798-7665</orcidid><orcidid>https://orcid.org/0000-0002-9691-2009</orcidid><orcidid>https://orcid.org/0000-0002-8554-2938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-03, Vol.13 (5), p.1185 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085070 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additive manufacturing Algorithms Animal welfare Bioethics Biomedical materials Bones Boundary conditions Construction Design optimization Experiments Finite element method Geometry Influence functions Joint surgery Lasers Lattice design Mechanical properties Parameters Quality Stainless steel Stress concentration Stress distribution Stress state Transplants & implants |
title | Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20Lattice%20Endoprosthesis%20for%20Long%20Bones:%20Manufacturing%20and%20Clinical%20Experiment&rft.jtitle=Materials&rft.au=Bolshakov,%20Pavel&rft.date=2020-03-06&rft.volume=13&rft.issue=5&rft.spage=1185&rft.pages=1185-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13051185&rft_dat=%3Cproquest_pubme%3E2376241558%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8687140e2f9c4ecd51a637873868d51eadbb0e7bbb124447925a5e7b9d1269793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376062364&rft_id=info:pmid/32155859&rfr_iscdi=true |