Loading…
Identification of neutrophils in the nonsensory epithelium of the vomeronasal organ in virus-antibody-free rats
Cells infiltrating the nonsensory epithelium of the vomeronasal organ of virus-antibody-free rats exhibited surface immunoreactivity for beta 2-microglobulin and immunoglobulin (Ig) E. They were further characterized by using immunohistochemical techniques with antibodies to cell-specific markers or...
Saved in:
Published in: | Cell and tissue research 1995-04, Vol.280 (1), p.139-151 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cells infiltrating the nonsensory epithelium of the vomeronasal organ of virus-antibody-free rats exhibited surface immunoreactivity for beta 2-microglobulin and immunoglobulin (Ig) E. They were further characterized by using immunohistochemical techniques with antibodies to cell-specific markers or histochemical techniques for immunocytes with surface receptors for IgE. Localization of intracellular granules immunoreactive for lactoferrin and CD18, a leukocyte adhesion molecule, unequivocally identified these cells as neutrophils. The low number of IgA- and IgG-immunoreactive B lymphocytes, T lymphocytes, and accessory immunocytes in the vomeronasal organ as well as the rest of the nasal cavity confirmed the absence of infection. We hypothesize that the operation of the vomeronasal pump induces repeated episodes of transient focal ischemia followed by reperfusion, which results in release of neutrophil chemoattractants and modulation of adhesion factors that regulate the extravasation and migration of neutrophils into the nonsensory epithelium. The distribution of immunoreactivity for interleukin 8 suggests that it is not the primary neutrophil chemoattractant in this system while that of CD18 suggests its active involvement in neutrophil extravasation. In addition to their role in immune surveillance, neutrophils may stimulate ion/water secretion into the vomeronasal lumen, affecting the perireceptor processes regulating stimulus access and clearance from the sensory epithelium. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/bf00304519 |