Loading…
Numerical Parameter Space Compression and Its Application to Biophysical Models
Physical models of biological systems can become difficult to interpret when they have a large number of parameters. But the models themselves actually depend on (i.e., are sensitive to) only a subset of those parameters. This phenomenon is due to parameter space compression (PSC), in which a subset...
Saved in:
Published in: | Biophysical journal 2020-03, Vol.118 (6), p.1455-1465 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical models of biological systems can become difficult to interpret when they have a large number of parameters. But the models themselves actually depend on (i.e., are sensitive to) only a subset of those parameters. This phenomenon is due to parameter space compression (PSC), in which a subset of parameters emerges as “stiff” as a function of time or space. PSC has only been used to explain analytically solvable physics models. We have generalized this result by developing a numerical approach to PSC that can be applied to any computational model. We validated our method against analytically solvable models of a random walk with drift and protein production and degradation. We then applied our method to a simple computational model of microtubule dynamic instability. We propose that numerical PSC has the potential to identify the low-dimensional structure of many computational models in biophysics. The low-dimensional structure of a model is easier to interpret and identifies the mechanisms and experiments that best characterize the system. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2020.01.023 |