Loading…

Cardiac specific transcription factor Csx/Nkx2.5 regulates transient-outward K+ channel expression in pluripotent P19 cell-derived cardiomyocytes

The homeobox-containing gene Csx/Nkx2.5 codes several cardiac transcription factors and plays a critical role in early cardiogenesis. We investigated the effect of Csx/Nkx2.5 on the expression of cardiac ion channels using P19-derived cardiomyocytes. P19CL6 cells and P19CL6 cells with Csx/Nkx2.5 ove...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physiological sciences 2020-03, Vol.70 (1), p.20-20, Article 20
Main Authors: Uchino, Tomoko, Zheng, Ming-Qi, Wang, Yan, Ono, Katsushige
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The homeobox-containing gene Csx/Nkx2.5 codes several cardiac transcription factors and plays a critical role in early cardiogenesis. We investigated the effect of Csx/Nkx2.5 on the expression of cardiac ion channels using P19-derived cardiomyocytes. P19CL6 cells and P19CL6 cells with Csx/Nkx2.5 overexpression (P19CL6-Csx cells) were induced to differentiate into cardiomyocytes by treatment with dimethyl sulfoxide. Action potentials and membrane currents were measured by whole cell patch clamp at different differentiation stage: the early stage (1–5 days after beating had begun) and the late stage (10–15 days after beating). Expression of Csx/Nkx2.5 mRNA was increased as the differentiation stages advanced in both P19CL6 and P19CL6-Csx cells. In action potential configuration, maximal diastolic potentials in P19CL6-Csx cells exhibited more hyperpolarized potential (‒ 64.2 mV) than those in P19CL6 cells (‒ 54.8 mV, p 
ISSN:1880-6546
1880-6562
DOI:10.1186/s12576-020-00748-z