Loading…
Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches
Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation...
Saved in:
Published in: | Scientific reports 2020-03, Vol.10 (1), p.5466-5466, Article 5466 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3 |
container_end_page | 5466 |
container_issue | 1 |
container_start_page | 5466 |
container_title | Scientific reports |
container_volume | 10 |
creator | Tabbakh, Farshid Hosmane, Narayan S. |
description | Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation effectiveness enhancement, using boron-11 agent to initiate the proton fusion reaction (P-BFT) and using boron-10 agent to capture the low energy secondary neutrons (NCEPT). Since, these two innovative methods have not been approved clinically, they have been recalculated in this report, discussed and compared between them and also with the traditional proton therapy to evaluate their impacts before the experimental investigations. The calculations in the present study were performed by Geant4 and MCNPX Monte Carlo Simulation Codes were utilized for obtaining more precision in our evaluations of these methods impacts. Despite small deviations in the results from the two MC tools for the NCEPT method, a good agreement was observed regarding the delivered dose rate to the tumor site at different depths while, for P-BFT related calculations, the GEANT4 was in agreement with the analytical calculations by means of the detailed cross-sections of proton-
11
B fusion. Accordingly, both the methods generate excess dose rate to the tumor several orders of magnitude lower than the proton dose rate. Also, it was found that, the P-BFT has more significant enhancement of effectiveness, when compared to the NCEPT, a method with impact strongly depended on the tumor’s depth. On the other hand, the advantage of neutron risk reduction proposed by NCEPT was found to give no considerable changes in the neutron dose absorption by healthy tissues. |
doi_str_mv | 10.1038/s41598-020-62268-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384208008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIVqV_gAOKxIVL6PgrHxyQ2tUuVCoCoXK2vM6kcbWxg-0U9cJvx9uUUjjgi0dv3nvj8SPkJYW3FHhzEgWVbVMCg7JirGpK-YQcMhCyZJyxp4_qA3Ic4zXkI1kraPucHGSUCirgkPxcu0E7gyO6VPi--Ko7q5P1rlj3PZpkb9BhjIV1xZfgU8YvBwx6un1XrPw46WBjxs4w_UB0xWaOe6l2XbGx8a7-hGnwXVywOaSsLk6nKXhtBowvyLNe7yIe399H5Ntmfbn6WF58_nC-Or0ojRSQSpSw5T1I3rS15qyWraQtw4YDai2xYiJ_ga4ROhCmqWrdic5IY-TWbNuq7vkReb_4TvN2xM7kbYPeqSnYUYdb5bVVf3ecHdSVv1E1tJUQIhu8uTcI_vuMManRRoO7nXbo56gYbwSDBqDJ1Nf_UK_9HFxeb8_iALStZGaxhWWCjzFg__AYCmqfsFoSVjlhdZew2otePV7jQfI7z0zgCyHmlrvC8Gf2f2x_AYEqstA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383001965</pqid></control><display><type>article</type><title>Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tabbakh, Farshid ; Hosmane, Narayan S.</creator><creatorcontrib>Tabbakh, Farshid ; Hosmane, Narayan S.</creatorcontrib><description>Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation effectiveness enhancement, using boron-11 agent to initiate the proton fusion reaction (P-BFT) and using boron-10 agent to capture the low energy secondary neutrons (NCEPT). Since, these two innovative methods have not been approved clinically, they have been recalculated in this report, discussed and compared between them and also with the traditional proton therapy to evaluate their impacts before the experimental investigations. The calculations in the present study were performed by Geant4 and MCNPX Monte Carlo Simulation Codes were utilized for obtaining more precision in our evaluations of these methods impacts. Despite small deviations in the results from the two MC tools for the NCEPT method, a good agreement was observed regarding the delivered dose rate to the tumor site at different depths while, for P-BFT related calculations, the GEANT4 was in agreement with the analytical calculations by means of the detailed cross-sections of proton-
11
B fusion. Accordingly, both the methods generate excess dose rate to the tumor several orders of magnitude lower than the proton dose rate. Also, it was found that, the P-BFT has more significant enhancement of effectiveness, when compared to the NCEPT, a method with impact strongly depended on the tumor’s depth. On the other hand, the advantage of neutron risk reduction proposed by NCEPT was found to give no considerable changes in the neutron dose absorption by healthy tissues.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-62268-5</identifier><identifier>PMID: 32214140</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1059 ; 639/705/1042 ; 639/766/387 ; Boron ; Humanities and Social Sciences ; Isotopes ; Monte Carlo simulation ; multidisciplinary ; Neutrons ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5466-5466, Article 5466</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3</citedby><cites>FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383001965/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383001965?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32214140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabbakh, Farshid</creatorcontrib><creatorcontrib>Hosmane, Narayan S.</creatorcontrib><title>Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation effectiveness enhancement, using boron-11 agent to initiate the proton fusion reaction (P-BFT) and using boron-10 agent to capture the low energy secondary neutrons (NCEPT). Since, these two innovative methods have not been approved clinically, they have been recalculated in this report, discussed and compared between them and also with the traditional proton therapy to evaluate their impacts before the experimental investigations. The calculations in the present study were performed by Geant4 and MCNPX Monte Carlo Simulation Codes were utilized for obtaining more precision in our evaluations of these methods impacts. Despite small deviations in the results from the two MC tools for the NCEPT method, a good agreement was observed regarding the delivered dose rate to the tumor site at different depths while, for P-BFT related calculations, the GEANT4 was in agreement with the analytical calculations by means of the detailed cross-sections of proton-
11
B fusion. Accordingly, both the methods generate excess dose rate to the tumor several orders of magnitude lower than the proton dose rate. Also, it was found that, the P-BFT has more significant enhancement of effectiveness, when compared to the NCEPT, a method with impact strongly depended on the tumor’s depth. On the other hand, the advantage of neutron risk reduction proposed by NCEPT was found to give no considerable changes in the neutron dose absorption by healthy tissues.</description><subject>631/67/1059</subject><subject>639/705/1042</subject><subject>639/766/387</subject><subject>Boron</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Neutrons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1v1DAQtRCIVqV_gAOKxIVL6PgrHxyQ2tUuVCoCoXK2vM6kcbWxg-0U9cJvx9uUUjjgi0dv3nvj8SPkJYW3FHhzEgWVbVMCg7JirGpK-YQcMhCyZJyxp4_qA3Ic4zXkI1kraPucHGSUCirgkPxcu0E7gyO6VPi--Ko7q5P1rlj3PZpkb9BhjIV1xZfgU8YvBwx6un1XrPw46WBjxs4w_UB0xWaOe6l2XbGx8a7-hGnwXVywOaSsLk6nKXhtBowvyLNe7yIe399H5Ntmfbn6WF58_nC-Or0ojRSQSpSw5T1I3rS15qyWraQtw4YDai2xYiJ_ga4ROhCmqWrdic5IY-TWbNuq7vkReb_4TvN2xM7kbYPeqSnYUYdb5bVVf3ecHdSVv1E1tJUQIhu8uTcI_vuMManRRoO7nXbo56gYbwSDBqDJ1Nf_UK_9HFxeb8_iALStZGaxhWWCjzFg__AYCmqfsFoSVjlhdZew2otePV7jQfI7z0zgCyHmlrvC8Gf2f2x_AYEqstA</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Tabbakh, Farshid</creator><creator>Hosmane, Narayan S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200325</creationdate><title>Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches</title><author>Tabbakh, Farshid ; Hosmane, Narayan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67/1059</topic><topic>639/705/1042</topic><topic>639/766/387</topic><topic>Boron</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Neutrons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabbakh, Farshid</creatorcontrib><creatorcontrib>Hosmane, Narayan S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabbakh, Farshid</au><au>Hosmane, Narayan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-25</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5466</spage><epage>5466</epage><pages>5466-5466</pages><artnum>5466</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation effectiveness enhancement, using boron-11 agent to initiate the proton fusion reaction (P-BFT) and using boron-10 agent to capture the low energy secondary neutrons (NCEPT). Since, these two innovative methods have not been approved clinically, they have been recalculated in this report, discussed and compared between them and also with the traditional proton therapy to evaluate their impacts before the experimental investigations. The calculations in the present study were performed by Geant4 and MCNPX Monte Carlo Simulation Codes were utilized for obtaining more precision in our evaluations of these methods impacts. Despite small deviations in the results from the two MC tools for the NCEPT method, a good agreement was observed regarding the delivered dose rate to the tumor site at different depths while, for P-BFT related calculations, the GEANT4 was in agreement with the analytical calculations by means of the detailed cross-sections of proton-
11
B fusion. Accordingly, both the methods generate excess dose rate to the tumor several orders of magnitude lower than the proton dose rate. Also, it was found that, the P-BFT has more significant enhancement of effectiveness, when compared to the NCEPT, a method with impact strongly depended on the tumor’s depth. On the other hand, the advantage of neutron risk reduction proposed by NCEPT was found to give no considerable changes in the neutron dose absorption by healthy tissues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32214140</pmid><doi>10.1038/s41598-020-62268-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-03, Vol.10 (1), p.5466-5466, Article 5466 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096444 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/67/1059 639/705/1042 639/766/387 Boron Humanities and Social Sciences Isotopes Monte Carlo simulation multidisciplinary Neutrons Science Science (multidisciplinary) |
title | Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Radiation%20Effectiveness%20in%20Proton%20Therapy:%20Comparison%20Between%20Fusion%20and%20Fission%20Methods%20and%20Further%20Approaches&rft.jtitle=Scientific%20reports&rft.au=Tabbakh,%20Farshid&rft.date=2020-03-25&rft.volume=10&rft.issue=1&rft.spage=5466&rft.epage=5466&rft.pages=5466-5466&rft.artnum=5466&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-62268-5&rft_dat=%3Cproquest_pubme%3E2384208008%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e50b3f053897a327595192e830eaa5e624226a7e0d04c867ad4dc5cc5bcb967f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383001965&rft_id=info:pmid/32214140&rfr_iscdi=true |