Loading…
Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces
Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology....
Saved in:
Published in: | Cryobiology 2019-12, Vol.91, p.3-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43 |
---|---|
cites | cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43 |
container_end_page | 17 |
container_issue | |
container_start_page | 3 |
container_title | Cryobiology |
container_volume | 91 |
creator | Anderson, Daniel M. Benson, James D Kearsley, Anthony J. |
description | Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series. |
doi_str_mv | 10.1016/j.cryobiol.2019.09.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011224017306089</els_id><sourcerecordid>2302485207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</originalsourceid><addsrcrecordid>eNqFkc1u1DAQxy0EokvhFSofuWQZ2_mwOSBQRelKlbjA2XKcyeIlsbd2UmnFhYfgCXkSnG63ghPSSGPN_Dz_-SDkgsGaAavf7NY2HkLrwrDmwNQasrHyCVkxUFBwofhTsgJgrOC8hDPyIqUdANSNKJ-TM8EqqaTgK_LjKsy-M5MLPtHQ0zF0ODi_pc7Tk0LYHn7__LXZvKXXaCZqfEdHkxKdovFpH-K0wO08fL9PZcLiMNARxzYDeB90FovB3c4uP_2EsTcW00vyrDdDwlcP_px8vfr45fK6uPn8aXP54aawlWimoiulqqq66ZQ1oBoloW9lg0K0pWHSGGtFDimDjeIgSzBVJbFnthV9bbEvxTl5d6y7n9sRO4s-dz7ofXSjiQcdjNP_Zrz7prfhTjeQxWqeC7x-KBDD7Yxp0qNLy5B5vDAnzQXwUlYcmozWR9TGkFLE_lGGgV4up3f6tFe9XE5DNrY0efF3k4_fTqfKwPsjgHlVdw6jTtaht9i5iHbSXXD_0_gDN0Gxzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302485207</pqid></control><display><type>article</type><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><source>Elsevier</source><creator>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</creator><creatorcontrib>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</creatorcontrib><description>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</description><identifier>ISSN: 0011-2240</identifier><identifier>ISSN: 1090-2392</identifier><identifier>EISSN: 1090-2392</identifier><identifier>DOI: 10.1016/j.cryobiol.2019.09.014</identifier><identifier>PMID: 31589832</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Cell Membrane - physiology ; Cryobiology ; Cryobiology - methods ; Cryopreservation - methods ; Hot Temperature ; Ice ; Interfacial conditions ; Membrane boundary conditions ; Thermodynamics ; Transport processes</subject><ispartof>Cryobiology, 2019-12, Vol.91, p.3-17</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</citedby><cites>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31589832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Daniel M.</creatorcontrib><creatorcontrib>Benson, James D</creatorcontrib><creatorcontrib>Kearsley, Anthony J.</creatorcontrib><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><title>Cryobiology</title><addtitle>Cryobiology</addtitle><description>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</description><subject>Animals</subject><subject>Cell Membrane - physiology</subject><subject>Cryobiology</subject><subject>Cryobiology - methods</subject><subject>Cryopreservation - methods</subject><subject>Hot Temperature</subject><subject>Ice</subject><subject>Interfacial conditions</subject><subject>Membrane boundary conditions</subject><subject>Thermodynamics</subject><subject>Transport processes</subject><issn>0011-2240</issn><issn>1090-2392</issn><issn>1090-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAQxy0EokvhFSofuWQZ2_mwOSBQRelKlbjA2XKcyeIlsbd2UmnFhYfgCXkSnG63ghPSSGPN_Dz_-SDkgsGaAavf7NY2HkLrwrDmwNQasrHyCVkxUFBwofhTsgJgrOC8hDPyIqUdANSNKJ-TM8EqqaTgK_LjKsy-M5MLPtHQ0zF0ODi_pc7Tk0LYHn7__LXZvKXXaCZqfEdHkxKdovFpH-K0wO08fL9PZcLiMNARxzYDeB90FovB3c4uP_2EsTcW00vyrDdDwlcP_px8vfr45fK6uPn8aXP54aawlWimoiulqqq66ZQ1oBoloW9lg0K0pWHSGGtFDimDjeIgSzBVJbFnthV9bbEvxTl5d6y7n9sRO4s-dz7ofXSjiQcdjNP_Zrz7prfhTjeQxWqeC7x-KBDD7Yxp0qNLy5B5vDAnzQXwUlYcmozWR9TGkFLE_lGGgV4up3f6tFe9XE5DNrY0efF3k4_fTqfKwPsjgHlVdw6jTtaht9i5iHbSXXD_0_gDN0Gxzg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Anderson, Daniel M.</creator><creator>Benson, James D</creator><creator>Kearsley, Anthony J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><author>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Membrane - physiology</topic><topic>Cryobiology</topic><topic>Cryobiology - methods</topic><topic>Cryopreservation - methods</topic><topic>Hot Temperature</topic><topic>Ice</topic><topic>Interfacial conditions</topic><topic>Membrane boundary conditions</topic><topic>Thermodynamics</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Daniel M.</creatorcontrib><creatorcontrib>Benson, James D</creatorcontrib><creatorcontrib>Kearsley, Anthony J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cryobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Daniel M.</au><au>Benson, James D</au><au>Kearsley, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</atitle><jtitle>Cryobiology</jtitle><addtitle>Cryobiology</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>91</volume><spage>3</spage><epage>17</epage><pages>3-17</pages><issn>0011-2240</issn><issn>1090-2392</issn><eissn>1090-2392</eissn><abstract>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>31589832</pmid><doi>10.1016/j.cryobiol.2019.09.014</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-2240 |
ispartof | Cryobiology, 2019-12, Vol.91, p.3-17 |
issn | 0011-2240 1090-2392 1090-2392 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098062 |
source | Elsevier |
subjects | Animals Cell Membrane - physiology Cryobiology Cryobiology - methods Cryopreservation - methods Hot Temperature Ice Interfacial conditions Membrane boundary conditions Thermodynamics Transport processes |
title | Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20modeling%20in%20cryobiology%E2%80%94II:%20Heat%20and%20mass%20transport%20in%20bulk%20and%20at%20cell%20membrane%20and%20ice-liquid%20interfaces&rft.jtitle=Cryobiology&rft.au=Anderson,%20Daniel%20M.&rft.date=2019-12-01&rft.volume=91&rft.spage=3&rft.epage=17&rft.pages=3-17&rft.issn=0011-2240&rft.eissn=1090-2392&rft_id=info:doi/10.1016/j.cryobiol.2019.09.014&rft_dat=%3Cproquest_pubme%3E2302485207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2302485207&rft_id=info:pmid/31589832&rfr_iscdi=true |