Loading…

Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces

Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology....

Full description

Saved in:
Bibliographic Details
Published in:Cryobiology 2019-12, Vol.91, p.3-17
Main Authors: Anderson, Daniel M., Benson, James D, Kearsley, Anthony J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43
cites cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43
container_end_page 17
container_issue
container_start_page 3
container_title Cryobiology
container_volume 91
creator Anderson, Daniel M.
Benson, James D
Kearsley, Anthony J.
description Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.
doi_str_mv 10.1016/j.cryobiol.2019.09.014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011224017306089</els_id><sourcerecordid>2302485207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</originalsourceid><addsrcrecordid>eNqFkc1u1DAQxy0EokvhFSofuWQZ2_mwOSBQRelKlbjA2XKcyeIlsbd2UmnFhYfgCXkSnG63ghPSSGPN_Dz_-SDkgsGaAavf7NY2HkLrwrDmwNQasrHyCVkxUFBwofhTsgJgrOC8hDPyIqUdANSNKJ-TM8EqqaTgK_LjKsy-M5MLPtHQ0zF0ODi_pc7Tk0LYHn7__LXZvKXXaCZqfEdHkxKdovFpH-K0wO08fL9PZcLiMNARxzYDeB90FovB3c4uP_2EsTcW00vyrDdDwlcP_px8vfr45fK6uPn8aXP54aawlWimoiulqqq66ZQ1oBoloW9lg0K0pWHSGGtFDimDjeIgSzBVJbFnthV9bbEvxTl5d6y7n9sRO4s-dz7ofXSjiQcdjNP_Zrz7prfhTjeQxWqeC7x-KBDD7Yxp0qNLy5B5vDAnzQXwUlYcmozWR9TGkFLE_lGGgV4up3f6tFe9XE5DNrY0efF3k4_fTqfKwPsjgHlVdw6jTtaht9i5iHbSXXD_0_gDN0Gxzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302485207</pqid></control><display><type>article</type><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><source>Elsevier</source><creator>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</creator><creatorcontrib>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</creatorcontrib><description>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</description><identifier>ISSN: 0011-2240</identifier><identifier>ISSN: 1090-2392</identifier><identifier>EISSN: 1090-2392</identifier><identifier>DOI: 10.1016/j.cryobiol.2019.09.014</identifier><identifier>PMID: 31589832</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Cell Membrane - physiology ; Cryobiology ; Cryobiology - methods ; Cryopreservation - methods ; Hot Temperature ; Ice ; Interfacial conditions ; Membrane boundary conditions ; Thermodynamics ; Transport processes</subject><ispartof>Cryobiology, 2019-12, Vol.91, p.3-17</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</citedby><cites>FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31589832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Daniel M.</creatorcontrib><creatorcontrib>Benson, James D</creatorcontrib><creatorcontrib>Kearsley, Anthony J.</creatorcontrib><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><title>Cryobiology</title><addtitle>Cryobiology</addtitle><description>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</description><subject>Animals</subject><subject>Cell Membrane - physiology</subject><subject>Cryobiology</subject><subject>Cryobiology - methods</subject><subject>Cryopreservation - methods</subject><subject>Hot Temperature</subject><subject>Ice</subject><subject>Interfacial conditions</subject><subject>Membrane boundary conditions</subject><subject>Thermodynamics</subject><subject>Transport processes</subject><issn>0011-2240</issn><issn>1090-2392</issn><issn>1090-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAQxy0EokvhFSofuWQZ2_mwOSBQRelKlbjA2XKcyeIlsbd2UmnFhYfgCXkSnG63ghPSSGPN_Dz_-SDkgsGaAavf7NY2HkLrwrDmwNQasrHyCVkxUFBwofhTsgJgrOC8hDPyIqUdANSNKJ-TM8EqqaTgK_LjKsy-M5MLPtHQ0zF0ODi_pc7Tk0LYHn7__LXZvKXXaCZqfEdHkxKdovFpH-K0wO08fL9PZcLiMNARxzYDeB90FovB3c4uP_2EsTcW00vyrDdDwlcP_px8vfr45fK6uPn8aXP54aawlWimoiulqqq66ZQ1oBoloW9lg0K0pWHSGGtFDimDjeIgSzBVJbFnthV9bbEvxTl5d6y7n9sRO4s-dz7ofXSjiQcdjNP_Zrz7prfhTjeQxWqeC7x-KBDD7Yxp0qNLy5B5vDAnzQXwUlYcmozWR9TGkFLE_lGGgV4up3f6tFe9XE5DNrY0efF3k4_fTqfKwPsjgHlVdw6jTtaht9i5iHbSXXD_0_gDN0Gxzg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Anderson, Daniel M.</creator><creator>Benson, James D</creator><creator>Kearsley, Anthony J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</title><author>Anderson, Daniel M. ; Benson, James D ; Kearsley, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Membrane - physiology</topic><topic>Cryobiology</topic><topic>Cryobiology - methods</topic><topic>Cryopreservation - methods</topic><topic>Hot Temperature</topic><topic>Ice</topic><topic>Interfacial conditions</topic><topic>Membrane boundary conditions</topic><topic>Thermodynamics</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Daniel M.</creatorcontrib><creatorcontrib>Benson, James D</creatorcontrib><creatorcontrib>Kearsley, Anthony J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cryobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Daniel M.</au><au>Benson, James D</au><au>Kearsley, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces</atitle><jtitle>Cryobiology</jtitle><addtitle>Cryobiology</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>91</volume><spage>3</spage><epage>17</epage><pages>3-17</pages><issn>0011-2240</issn><issn>1090-2392</issn><eissn>1090-2392</eissn><abstract>Modeling coupled heat and mass transport in biological systems is critical to the understanding of cryobiology. In Part I of this series we derived the transport equation and presented a general thermodynamic derivation of the critical components needed to use the transport equation in cryobiology. Here we refine to more cryobiologically relevant instances of a double free-boundary problem with multiple species. In particular, we present the derivation of appropriate mass and heat transport constitutive equations for a system consisting of a cell or tissue with a free external boundary, surrounded by liquid media with an encroaching free solidification front. This model consists of two parts–namely, transport in the “bulk phases” away from boundaries, and interfacial transport. Here we derive the bulk and interfacial mass, energy, and momentum balance equations and present a simplification of transport within membranes to jump conditions across them. We establish the governing equations for this cell/liquid/solid system whose solution in the case of a ternary mixture is explored in Part III of this series.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>31589832</pmid><doi>10.1016/j.cryobiol.2019.09.014</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-2240
ispartof Cryobiology, 2019-12, Vol.91, p.3-17
issn 0011-2240
1090-2392
1090-2392
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098062
source Elsevier
subjects Animals
Cell Membrane - physiology
Cryobiology
Cryobiology - methods
Cryopreservation - methods
Hot Temperature
Ice
Interfacial conditions
Membrane boundary conditions
Thermodynamics
Transport processes
title Foundations of modeling in cryobiology—II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20modeling%20in%20cryobiology%E2%80%94II:%20Heat%20and%20mass%20transport%20in%20bulk%20and%20at%20cell%20membrane%20and%20ice-liquid%20interfaces&rft.jtitle=Cryobiology&rft.au=Anderson,%20Daniel%20M.&rft.date=2019-12-01&rft.volume=91&rft.spage=3&rft.epage=17&rft.pages=3-17&rft.issn=0011-2240&rft.eissn=1090-2392&rft_id=info:doi/10.1016/j.cryobiol.2019.09.014&rft_dat=%3Cproquest_pubme%3E2302485207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-d4895567d9ca097980fb87e33b4a18aacc380f9ae7920840a558ef1cb3f6cef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2302485207&rft_id=info:pmid/31589832&rfr_iscdi=true