Loading…

Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks

To examine the potential roles of melatonin in cadmium (Cd) uptake, accumulation and detoxification in Malus plants, we exposed two different apple rootstocks varying greatly in Cd uptake and accumulation to either 0 or 30 μM Cd together with 0 or 100 μM melatonin. Cadmium stress stimulated endogeno...

Full description

Saved in:
Bibliographic Details
Published in:Tree physiology 2020-05, Vol.40 (6), p.746-761
Main Authors: He, Jiali, Zhuang, Xiaolei, Zhou, Jiangtao, Sun, Luyang, Wan, Huixue, Li, Huifeng, Lyu, Deguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To examine the potential roles of melatonin in cadmium (Cd) uptake, accumulation and detoxification in Malus plants, we exposed two different apple rootstocks varying greatly in Cd uptake and accumulation to either 0 or 30 μM Cd together with 0 or 100 μM melatonin. Cadmium stress stimulated endogenous melatonin production to a greater extent in the Cd-tolerant Malus baccata Borkh. than in the Cd-susceptible Malus micromalus ‘qingzhoulinqin’. Melatonin application attenuated Cd-induced reductions in growth, photosynthesis and enzyme activity, as well as reactive oxygen species (ROS) and malondialdehyde accumulation. Melatonin treatment more effectively restored photosynthesis, photosynthetic pigments and biomass in Cd-challenged M. micromalus ‘qingzhoulinqin’ than in Cd-stressed M. baccata. Exogenous melatonin lowered root Cd2+ uptake, reduced leaf Cd accumulation, decreased Cd translocation factors and increased root, stem and leaf melatonin contents in both Cd-exposed rootstocks. Melatonin application increased both antioxidant concentrations and enzyme activities to scavenge Cd-induced ROS. Exogenous melatonin treatment altered the mRNA levels of several genes regulating Cd uptake, transport and detoxification including HA7, NRAMP1, NRAMP3, HMA4, PCR2, NAS1, MT2, ABCC1 and MHX. Taken together, these results suggest that exogenous melatonin reduced aerial parts Cd accumulation and mitigated Cd toxicity in Malus plants, probably due to the melatonin-mediated Cd allocation in tissues, and induction of antioxidant defense system and transcriptionally regulated key genes involved in detoxification.
ISSN:1758-4469
0829-318X
1758-4469
DOI:10.1093/treephys/tpaa024