Loading…
Thermal behavior and viscoelastic properties of gutta-percha used for back-filling the root canal
In clinical operations, qualitative differences in the texture and operational feeling of the regular type and soft type back-filled gutta-percha are readily discernible. This study aimed to investigate and compare the thermal behavior and physical properties of the two gutta-percha materials. The c...
Saved in:
Published in: | Journal of dental sciences 2020-03, Vol.15 (1), p.28-33 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In clinical operations, qualitative differences in the texture and operational feeling of the regular type and soft type back-filled gutta-percha are readily discernible. This study aimed to investigate and compare the thermal behavior and physical properties of the two gutta-percha materials.
The chemical compositions of regular and soft type Gutta-Percha Obturator® pellets were examined via energy dispersive X-ray spectroscopy. The thermal behaviors of the pellets during heating and cooling were evaluated using a differential scanning calorimeter. Finally, the viscoelastic properties of the two materials during cooling were assessed using a modular compact rheometer.
The soft type gutta-percha contained a greater atomic percentage of zinc than the regular type material. In addition, the soft type gutta-percha exhibited exothermic peaks during cooling, whereas the regular type gutta-percha did not. The two materials exhibited different viscoelastic behaviors under cooling. In particular, the rate of change of the loss factor for the soft type gutta-percha was more than that of the regular type gutta-percha at temperature lower than 80°C.
The soft type gutta-percha underwent significant crystallization during cooling, and therefore exhibited pronounced volume shrinkage. Furthermore, the soft type gutta-percha underwent a greater rate of change in viscoelasticity under cooling than the regular type gutta-percha, and exhibited poorer physical stability. Consequently, in the back-packing procedure, soft type gutta-percha must be compacted more often over time than regular type gutta-percha to ensure the same quality of root canal obturation. |
---|---|
ISSN: | 1991-7902 2213-8862 |
DOI: | 10.1016/j.jds.2019.10.002 |