Loading…

Effective inhibition of hepatitis E virus replication in A549 cells and piglets by RNA interference (RNAi) targeting RNA-dependent RNA polymerase

RNA interference (RNAi) is a natural mechanism for suppressing or silencing expression of aberrant or foreign genes. It is a powerful antiviral strategy that has been widely employed to protect hosts from viral infection. Hepatitis E (HE) is an acute fulminant hepatitis in adults that has particular...

Full description

Saved in:
Bibliographic Details
Published in:Antiviral research 2009-09, Vol.83 (3), p.274-281
Main Authors: Huang, Fen, Hua, Xiuguo, Yang, Shixing, Yuan, Congli, Zhang, Wen
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RNA interference (RNAi) is a natural mechanism for suppressing or silencing expression of aberrant or foreign genes. It is a powerful antiviral strategy that has been widely employed to protect hosts from viral infection. Hepatitis E (HE) is an acute fulminant hepatitis in adults that has particularly high mortality in pregnant women. At this point in time, there is no vaccine or antiviral treatment that is effective against the infectious agent, HEV. The nonstructural polyprotein region possesses an RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of the viral RNA genome. RdRp is therefore regarded as one of the most attractive candidates for RNA interference (RNAi). In the present study, the high efficiency and specificity of siRNA were evaluated by Real-Time quantitative PCR and Western blot assays. Protective effects against HEV infection were achieved in A549 cells and in piglets. In piglets treated with a shRNA-RdRp-1 expression plasmid prior to HEV inoculation, HEV antigens were significantly reduced in the liver, spleen, and kidneys, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were clearly decreased. These results suggested that RNAi is a potentially effective antiviral strategy against HEV replication and infection.
ISSN:0166-3542
1872-9096
DOI:10.1016/j.antiviral.2009.06.008