Loading…
Estimating and leveraging protein diffusion on ion-exchange resin surfaces
Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatograph...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7004-7010 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093 |
container_end_page | 7010 |
container_issue | 13 |
container_start_page | 7004 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Khanal, Ohnmar Kumar, Vijesh Schlegel, Fabrice Lenhoff, Abraham M. |
description | Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography. |
doi_str_mv | 10.1073/pnas.1921499117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929416</jstor_id><sourcerecordid>26929416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJadwk555SFnrJZZ3Rx66kS6CEpE0x5JK7kKVZZ81acqTdkP73lXHitgHBIN5vHvN4hHyhMKcg-eU22DynmlGhNaXyA5lR0LRuhYYjMgNgslaCiWPyOec1AOhGwSdyzBmVutV0Rn7d5LHf2LEPq8oGXw34jMmudt9tiiP2ofJ91025j6Eqr4waX9yjDSusEuai5yl11mE-JR87O2Q8e50n5OH25uH6Z724_3F3_X1Ruwb0WFuU3EmnqOKuY8wx37Tc-07IpffIwSqvvHBKNbzhtKUOlt4qh67lzIHmJ-Rqb7udlhv0DsOY7GC2qcRIv020vflfCf2jWcVnI2mJDU0xuHg1SPFpwjyaTZ8dDoMNGKdsGJdSa8FbWdBv79B1nFIo6QqlpFBcMCjU5Z5yKeacsDscQ8HsajK7mszfmsrG138zHPi3XgpwvgfWeYzpoLNWMy1oy_8AASaZrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387483420</pqid></control><display><type>article</type><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><source>PubMed Central(OpenAccess)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</creator><creatorcontrib>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</creatorcontrib><description>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1921499117</identifier><identifier>PMID: 32179691</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Beads ; Binding ; Biosensors ; Confocal microscopy ; Dependence ; Diffusion ; Diffusion rate ; Diffusivity ; Interfaces ; Ion exchange ; Ion exchange resins ; Ion Exchange Resins - chemistry ; Ion-exchange chromatography ; Ionic strength ; Ions ; Liquid-solid interfaces ; Mass transfer ; Models, Chemical ; Neutron scattering ; Physical Sciences ; Protein transport ; Proteins ; Proteins - chemistry ; Surface diffusion</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7004-7010</ispartof><rights>Copyright National Academy of Sciences Mar 31, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</citedby><cites>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</cites><orcidid>0000-0002-7831-219X ; 0000-0002-3834-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929416$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanal, Ohnmar</creatorcontrib><creatorcontrib>Kumar, Vijesh</creatorcontrib><creatorcontrib>Schlegel, Fabrice</creatorcontrib><creatorcontrib>Lenhoff, Abraham M.</creatorcontrib><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</description><subject>Affinity</subject><subject>Beads</subject><subject>Binding</subject><subject>Biosensors</subject><subject>Confocal microscopy</subject><subject>Dependence</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Diffusivity</subject><subject>Interfaces</subject><subject>Ion exchange</subject><subject>Ion exchange resins</subject><subject>Ion Exchange Resins - chemistry</subject><subject>Ion-exchange chromatography</subject><subject>Ionic strength</subject><subject>Ions</subject><subject>Liquid-solid interfaces</subject><subject>Mass transfer</subject><subject>Models, Chemical</subject><subject>Neutron scattering</subject><subject>Physical Sciences</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Surface diffusion</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVJadwk555SFnrJZZ3Rx66kS6CEpE0x5JK7kKVZZ81acqTdkP73lXHitgHBIN5vHvN4hHyhMKcg-eU22DynmlGhNaXyA5lR0LRuhYYjMgNgslaCiWPyOec1AOhGwSdyzBmVutV0Rn7d5LHf2LEPq8oGXw34jMmudt9tiiP2ofJ91025j6Eqr4waX9yjDSusEuai5yl11mE-JR87O2Q8e50n5OH25uH6Z724_3F3_X1Ruwb0WFuU3EmnqOKuY8wx37Tc-07IpffIwSqvvHBKNbzhtKUOlt4qh67lzIHmJ-Rqb7udlhv0DsOY7GC2qcRIv020vflfCf2jWcVnI2mJDU0xuHg1SPFpwjyaTZ8dDoMNGKdsGJdSa8FbWdBv79B1nFIo6QqlpFBcMCjU5Z5yKeacsDscQ8HsajK7mszfmsrG138zHPi3XgpwvgfWeYzpoLNWMy1oy_8AASaZrA</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Khanal, Ohnmar</creator><creator>Kumar, Vijesh</creator><creator>Schlegel, Fabrice</creator><creator>Lenhoff, Abraham M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7831-219X</orcidid><orcidid>https://orcid.org/0000-0002-3834-1906</orcidid></search><sort><creationdate>20200331</creationdate><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><author>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Beads</topic><topic>Binding</topic><topic>Biosensors</topic><topic>Confocal microscopy</topic><topic>Dependence</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Diffusivity</topic><topic>Interfaces</topic><topic>Ion exchange</topic><topic>Ion exchange resins</topic><topic>Ion Exchange Resins - chemistry</topic><topic>Ion-exchange chromatography</topic><topic>Ionic strength</topic><topic>Ions</topic><topic>Liquid-solid interfaces</topic><topic>Mass transfer</topic><topic>Models, Chemical</topic><topic>Neutron scattering</topic><topic>Physical Sciences</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanal, Ohnmar</creatorcontrib><creatorcontrib>Kumar, Vijesh</creatorcontrib><creatorcontrib>Schlegel, Fabrice</creatorcontrib><creatorcontrib>Lenhoff, Abraham M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanal, Ohnmar</au><au>Kumar, Vijesh</au><au>Schlegel, Fabrice</au><au>Lenhoff, Abraham M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7004</spage><epage>7010</epage><pages>7004-7010</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32179691</pmid><doi>10.1073/pnas.1921499117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7831-219X</orcidid><orcidid>https://orcid.org/0000-0002-3834-1906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7004-7010 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132105 |
source | PubMed Central(OpenAccess); JSTOR Archival Journals and Primary Sources Collection |
subjects | Affinity Beads Binding Biosensors Confocal microscopy Dependence Diffusion Diffusion rate Diffusivity Interfaces Ion exchange Ion exchange resins Ion Exchange Resins - chemistry Ion-exchange chromatography Ionic strength Ions Liquid-solid interfaces Mass transfer Models, Chemical Neutron scattering Physical Sciences Protein transport Proteins Proteins - chemistry Surface diffusion |
title | Estimating and leveraging protein diffusion on ion-exchange resin surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20and%20leveraging%20protein%20diffusion%20on%20ion-exchange%20resin%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Khanal,%20Ohnmar&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7004&rft.epage=7010&rft.pages=7004-7010&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1921499117&rft_dat=%3Cjstor_pubme%3E26929416%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387483420&rft_id=info:pmid/32179691&rft_jstor_id=26929416&rfr_iscdi=true |