Loading…

Estimating and leveraging protein diffusion on ion-exchange resin surfaces

Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatograph...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7004-7010
Main Authors: Khanal, Ohnmar, Kumar, Vijesh, Schlegel, Fabrice, Lenhoff, Abraham M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093
cites cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093
container_end_page 7010
container_issue 13
container_start_page 7004
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Khanal, Ohnmar
Kumar, Vijesh
Schlegel, Fabrice
Lenhoff, Abraham M.
description Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.
doi_str_mv 10.1073/pnas.1921499117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929416</jstor_id><sourcerecordid>26929416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJadwk555SFnrJZZ3Rx66kS6CEpE0x5JK7kKVZZ81acqTdkP73lXHitgHBIN5vHvN4hHyhMKcg-eU22DynmlGhNaXyA5lR0LRuhYYjMgNgslaCiWPyOec1AOhGwSdyzBmVutV0Rn7d5LHf2LEPq8oGXw34jMmudt9tiiP2ofJ91025j6Eqr4waX9yjDSusEuai5yl11mE-JR87O2Q8e50n5OH25uH6Z724_3F3_X1Ruwb0WFuU3EmnqOKuY8wx37Tc-07IpffIwSqvvHBKNbzhtKUOlt4qh67lzIHmJ-Rqb7udlhv0DsOY7GC2qcRIv020vflfCf2jWcVnI2mJDU0xuHg1SPFpwjyaTZ8dDoMNGKdsGJdSa8FbWdBv79B1nFIo6QqlpFBcMCjU5Z5yKeacsDscQ8HsajK7mszfmsrG138zHPi3XgpwvgfWeYzpoLNWMy1oy_8AASaZrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387483420</pqid></control><display><type>article</type><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><source>PubMed Central(OpenAccess)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</creator><creatorcontrib>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</creatorcontrib><description>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1921499117</identifier><identifier>PMID: 32179691</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Beads ; Binding ; Biosensors ; Confocal microscopy ; Dependence ; Diffusion ; Diffusion rate ; Diffusivity ; Interfaces ; Ion exchange ; Ion exchange resins ; Ion Exchange Resins - chemistry ; Ion-exchange chromatography ; Ionic strength ; Ions ; Liquid-solid interfaces ; Mass transfer ; Models, Chemical ; Neutron scattering ; Physical Sciences ; Protein transport ; Proteins ; Proteins - chemistry ; Surface diffusion</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7004-7010</ispartof><rights>Copyright National Academy of Sciences Mar 31, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</citedby><cites>FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</cites><orcidid>0000-0002-7831-219X ; 0000-0002-3834-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929416$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanal, Ohnmar</creatorcontrib><creatorcontrib>Kumar, Vijesh</creatorcontrib><creatorcontrib>Schlegel, Fabrice</creatorcontrib><creatorcontrib>Lenhoff, Abraham M.</creatorcontrib><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</description><subject>Affinity</subject><subject>Beads</subject><subject>Binding</subject><subject>Biosensors</subject><subject>Confocal microscopy</subject><subject>Dependence</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Diffusivity</subject><subject>Interfaces</subject><subject>Ion exchange</subject><subject>Ion exchange resins</subject><subject>Ion Exchange Resins - chemistry</subject><subject>Ion-exchange chromatography</subject><subject>Ionic strength</subject><subject>Ions</subject><subject>Liquid-solid interfaces</subject><subject>Mass transfer</subject><subject>Models, Chemical</subject><subject>Neutron scattering</subject><subject>Physical Sciences</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Surface diffusion</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVJadwk555SFnrJZZ3Rx66kS6CEpE0x5JK7kKVZZ81acqTdkP73lXHitgHBIN5vHvN4hHyhMKcg-eU22DynmlGhNaXyA5lR0LRuhYYjMgNgslaCiWPyOec1AOhGwSdyzBmVutV0Rn7d5LHf2LEPq8oGXw34jMmudt9tiiP2ofJ91025j6Eqr4waX9yjDSusEuai5yl11mE-JR87O2Q8e50n5OH25uH6Z724_3F3_X1Ruwb0WFuU3EmnqOKuY8wx37Tc-07IpffIwSqvvHBKNbzhtKUOlt4qh67lzIHmJ-Rqb7udlhv0DsOY7GC2qcRIv020vflfCf2jWcVnI2mJDU0xuHg1SPFpwjyaTZ8dDoMNGKdsGJdSa8FbWdBv79B1nFIo6QqlpFBcMCjU5Z5yKeacsDscQ8HsajK7mszfmsrG138zHPi3XgpwvgfWeYzpoLNWMy1oy_8AASaZrA</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Khanal, Ohnmar</creator><creator>Kumar, Vijesh</creator><creator>Schlegel, Fabrice</creator><creator>Lenhoff, Abraham M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7831-219X</orcidid><orcidid>https://orcid.org/0000-0002-3834-1906</orcidid></search><sort><creationdate>20200331</creationdate><title>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</title><author>Khanal, Ohnmar ; Kumar, Vijesh ; Schlegel, Fabrice ; Lenhoff, Abraham M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Beads</topic><topic>Binding</topic><topic>Biosensors</topic><topic>Confocal microscopy</topic><topic>Dependence</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Diffusivity</topic><topic>Interfaces</topic><topic>Ion exchange</topic><topic>Ion exchange resins</topic><topic>Ion Exchange Resins - chemistry</topic><topic>Ion-exchange chromatography</topic><topic>Ionic strength</topic><topic>Ions</topic><topic>Liquid-solid interfaces</topic><topic>Mass transfer</topic><topic>Models, Chemical</topic><topic>Neutron scattering</topic><topic>Physical Sciences</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanal, Ohnmar</creatorcontrib><creatorcontrib>Kumar, Vijesh</creatorcontrib><creatorcontrib>Schlegel, Fabrice</creatorcontrib><creatorcontrib>Lenhoff, Abraham M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanal, Ohnmar</au><au>Kumar, Vijesh</au><au>Schlegel, Fabrice</au><au>Lenhoff, Abraham M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating and leveraging protein diffusion on ion-exchange resin surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7004</spage><epage>7010</epage><pages>7004-7010</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protein mobility at solid–liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32179691</pmid><doi>10.1073/pnas.1921499117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7831-219X</orcidid><orcidid>https://orcid.org/0000-0002-3834-1906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7004-7010
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132105
source PubMed Central(OpenAccess); JSTOR Archival Journals and Primary Sources Collection
subjects Affinity
Beads
Binding
Biosensors
Confocal microscopy
Dependence
Diffusion
Diffusion rate
Diffusivity
Interfaces
Ion exchange
Ion exchange resins
Ion Exchange Resins - chemistry
Ion-exchange chromatography
Ionic strength
Ions
Liquid-solid interfaces
Mass transfer
Models, Chemical
Neutron scattering
Physical Sciences
Protein transport
Proteins
Proteins - chemistry
Surface diffusion
title Estimating and leveraging protein diffusion on ion-exchange resin surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20and%20leveraging%20protein%20diffusion%20on%20ion-exchange%20resin%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Khanal,%20Ohnmar&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7004&rft.epage=7010&rft.pages=7004-7010&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1921499117&rft_dat=%3Cjstor_pubme%3E26929416%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-ae73c7c8183cf22c2d563ddf47bdde30a8d8d4c885353161c0bda8cec632c093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387483420&rft_id=info:pmid/32179691&rft_jstor_id=26929416&rfr_iscdi=true