Loading…

Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS

The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2020-02, Vol.92 (4), p.2885-2890
Main Authors: Griffiths, Rian L, Hughes, James W, Abbatiello, Susan E, Belford, Michael W, Styles, Iain B, Cooper, Helen J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63
cites cdi_FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63
container_end_page 2890
container_issue 4
container_start_page 2885
container_title Analytical chemistry (Washington)
container_volume 92
creator Griffiths, Rian L
Hughes, James W
Abbatiello, Susan E
Belford, Michael W
Styles, Iain B
Cooper, Helen J
description The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.
doi_str_mv 10.1021/acs.analchem.9b05124
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344244823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63</originalsourceid><addsrcrecordid>eNp9kUFr2zAYhsXYWLNu_2AMwy69OP0ky5J8GYTQboGUFdKdhaTIiYotZZJSyL-fTdLQ9dCT4NPzvp_Eg9BXDFMMBF8rk6bKq85sbT9tNNSY0HdogmsCJROCvEcTAKhKwgEu0KeUHgEwBsw-oosKN4xzwSfIzEO_i3ZrfXJPtljerGbFnUqpWO2syTH0NsdDsejVxvlNEdpi4bMyubiPIVvnU6EP48huosou-JGYHzrn19EZ1RW3s8Xd6jP60Kou2S-n8xL9ub15mP8ql79_LuazZalqAbmsMAgsKgst1UaJumnXXClglFHCoNLUCAp1W1es0UavOWcNbq3mLdMEGs2qS_Tj2Lvb696ujfU5qk7uoutVPMignPz_xrut3IQnyTGtCRdDwdWpIIa_e5uy7F0ytuuUt2GfJKkoJZQKUg3o91foY9jHQcdIMQBS16wZKHqkTAwpRdueH4NBjhblYFE-W5Qni0Ps28uPnEPP2gYAjsAYPy9-s_MfDh6sWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360025569</pqid></control><display><type>article</type><title>Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Griffiths, Rian L ; Hughes, James W ; Abbatiello, Susan E ; Belford, Michael W ; Styles, Iain B ; Cooper, Helen J</creator><creatorcontrib>Griffiths, Rian L ; Hughes, James W ; Abbatiello, Susan E ; Belford, Michael W ; Styles, Iain B ; Cooper, Helen J</creatorcontrib><description>The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05124</identifier><identifier>PMID: 31967787</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Brain ; Cell Line ; Cell lines ; Chemistry ; Datasets ; Imaging ; Ion Mobility Spectrometry ; Ionic mobility ; Ions ; Kidney - chemistry ; Kidneys ; Letter ; Male ; Mass Spectrometry ; Mass spectroscopy ; Neuroimaging ; Proteins ; Proteins - analysis ; Proteomics ; Rats ; Rats, Wistar ; Scientific imaging ; Spectroscopy ; Surface analysis (chemical) ; Testis - chemistry ; Waveforms ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.2885-2890</ispartof><rights>Copyright American Chemical Society Feb 18, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63</citedby><cites>FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63</cites><orcidid>0000-0002-1601-4664 ; 0000-0001-6229-7880 ; 0000-0002-6755-0299 ; 0000-0003-4590-9384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31967787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Griffiths, Rian L</creatorcontrib><creatorcontrib>Hughes, James W</creatorcontrib><creatorcontrib>Abbatiello, Susan E</creatorcontrib><creatorcontrib>Belford, Michael W</creatorcontrib><creatorcontrib>Styles, Iain B</creatorcontrib><creatorcontrib>Cooper, Helen J</creatorcontrib><title>Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.</description><subject>Animals</subject><subject>Brain</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Chemistry</subject><subject>Datasets</subject><subject>Imaging</subject><subject>Ion Mobility Spectrometry</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Kidney - chemistry</subject><subject>Kidneys</subject><subject>Letter</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Neuroimaging</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Surface analysis (chemical)</subject><subject>Testis - chemistry</subject><subject>Waveforms</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr2zAYhsXYWLNu_2AMwy69OP0ky5J8GYTQboGUFdKdhaTIiYotZZJSyL-fTdLQ9dCT4NPzvp_Eg9BXDFMMBF8rk6bKq85sbT9tNNSY0HdogmsCJROCvEcTAKhKwgEu0KeUHgEwBsw-oosKN4xzwSfIzEO_i3ZrfXJPtljerGbFnUqpWO2syTH0NsdDsejVxvlNEdpi4bMyubiPIVvnU6EP48huosou-JGYHzrn19EZ1RW3s8Xd6jP60Kou2S-n8xL9ub15mP8ql79_LuazZalqAbmsMAgsKgst1UaJumnXXClglFHCoNLUCAp1W1es0UavOWcNbq3mLdMEGs2qS_Tj2Lvb696ujfU5qk7uoutVPMignPz_xrut3IQnyTGtCRdDwdWpIIa_e5uy7F0ytuuUt2GfJKkoJZQKUg3o91foY9jHQcdIMQBS16wZKHqkTAwpRdueH4NBjhblYFE-W5Qni0Ps28uPnEPP2gYAjsAYPy9-s_MfDh6sWA</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Griffiths, Rian L</creator><creator>Hughes, James W</creator><creator>Abbatiello, Susan E</creator><creator>Belford, Michael W</creator><creator>Styles, Iain B</creator><creator>Cooper, Helen J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1601-4664</orcidid><orcidid>https://orcid.org/0000-0001-6229-7880</orcidid><orcidid>https://orcid.org/0000-0002-6755-0299</orcidid><orcidid>https://orcid.org/0000-0003-4590-9384</orcidid></search><sort><creationdate>20200218</creationdate><title>Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS</title><author>Griffiths, Rian L ; Hughes, James W ; Abbatiello, Susan E ; Belford, Michael W ; Styles, Iain B ; Cooper, Helen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Chemistry</topic><topic>Datasets</topic><topic>Imaging</topic><topic>Ion Mobility Spectrometry</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Kidney - chemistry</topic><topic>Kidneys</topic><topic>Letter</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Neuroimaging</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Surface analysis (chemical)</topic><topic>Testis - chemistry</topic><topic>Waveforms</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, Rian L</creatorcontrib><creatorcontrib>Hughes, James W</creatorcontrib><creatorcontrib>Abbatiello, Susan E</creatorcontrib><creatorcontrib>Belford, Michael W</creatorcontrib><creatorcontrib>Styles, Iain B</creatorcontrib><creatorcontrib>Cooper, Helen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, Rian L</au><au>Hughes, James W</au><au>Abbatiello, Susan E</au><au>Belford, Michael W</au><au>Styles, Iain B</au><au>Cooper, Helen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>92</volume><issue>4</issue><spage>2885</spage><epage>2890</epage><pages>2885-2890</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31967787</pmid><doi>10.1021/acs.analchem.9b05124</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1601-4664</orcidid><orcidid>https://orcid.org/0000-0001-6229-7880</orcidid><orcidid>https://orcid.org/0000-0002-6755-0299</orcidid><orcidid>https://orcid.org/0000-0003-4590-9384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.2885-2890
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145278
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Brain
Cell Line
Cell lines
Chemistry
Datasets
Imaging
Ion Mobility Spectrometry
Ionic mobility
Ions
Kidney - chemistry
Kidneys
Letter
Male
Mass Spectrometry
Mass spectroscopy
Neuroimaging
Proteins
Proteins - analysis
Proteomics
Rats
Rats, Wistar
Scientific imaging
Spectroscopy
Surface analysis (chemical)
Testis - chemistry
Waveforms
Workflow
title Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20LESA%20Mass%20Spectrometry%20Imaging%20of%20Intact%20Proteins%20by%20Integration%20of%20Cylindrical%20FAIMS&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Griffiths,%20Rian%20L&rft.date=2020-02-18&rft.volume=92&rft.issue=4&rft.spage=2885&rft.epage=2890&rft.pages=2885-2890&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05124&rft_dat=%3Cproquest_pubme%3E2344244823%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a580t-3108183e0f4bca859fd7aa064642603b4c8405f5369bcbd77691feb7f6b209b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2360025569&rft_id=info:pmid/31967787&rfr_iscdi=true