Loading…

Using Machine Learning in Psychiatry: The Need to Establish a Framework That Nurtures Trustworthiness

The rapid embracing of artificial intelligence in psychiatry has a flavor of being the current "wild west"; a multidisciplinary approach that is very technical and complex, yet seems to produce findings that resonate. These studies are hard to review as the methods are often opaque and it...

Full description

Saved in:
Bibliographic Details
Published in:Schizophrenia bulletin 2020-01, Vol.46 (1), p.11-14
Main Authors: Chandler, Chelsea, Foltz, Peter W, Elvevåg, Brita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid embracing of artificial intelligence in psychiatry has a flavor of being the current "wild west"; a multidisciplinary approach that is very technical and complex, yet seems to produce findings that resonate. These studies are hard to review as the methods are often opaque and it is tricky to find the suitable combination of reviewers. This issue will only get more complex in the absence of a rigorous framework to evaluate such studies and thus nurture trustworthiness. Therefore, our paper discusses the urgency of the field to develop a framework with which to evaluate the complex methodology such that the process is done honestly, fairly, scientifically, and accurately. However, evaluation is a complicated process and so we focus on three issues, namely explainability, transparency, and generalizability, that are critical for establishing the viability of using artificial intelligence in psychiatry. We discuss how defining these three issues helps towards building a framework to ensure trustworthiness, but show how difficult definition can be, as the terms have different meanings in medicine, computer science, and law. We conclude that it is important to start the discussion such that there can be a call for policy on this and that the community takes extra care when reviewing clinical applications of such models..
ISSN:0586-7614
1745-1701
1745-1701
DOI:10.1093/schbul/sbz105