Loading…

Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport

The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-04, Vol.295 (15), p.4974-4984
Main Authors: Majumdar, Aritri, Trinh, Vy, Moore, Kyle J., Smallwood, Chuck R., Kumar, Ashish, Yang, Taihao, Scott, Daniel C., Long, Noah J., Newton, Salete M., Klebba, Phillip E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N–C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N–C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA119.011850