Loading…
Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies
Abstract Body plans often evolve through changes in the number of repeated parts or serial homologs. Using the butterfly Bicyclus anynana, RiveraColón et al. studied the genetics underlying heritability... The underlying genetic changes that regulate the appearance and disappearance of repeated trai...
Saved in:
Published in: | Genetics (Austin) 2020-04, Vol.214 (4), p.1059-1078 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3 |
container_end_page | 1078 |
container_issue | 4 |
container_start_page | 1059 |
container_title | Genetics (Austin) |
container_volume | 214 |
creator | Rivera-Colón, Angel G Westerman, Erica L Van Belleghem, Steven M Monteiro, Antónia Papa, Riccardo |
description | Abstract
Body plans often evolve through changes in the number of repeated parts or serial homologs. Using the butterfly Bicyclus anynana, RiveraColón et al. studied the genetics underlying heritability...
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input–output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input–output genes. |
doi_str_mv | 10.1534/genetics.120.303059 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7153931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/genetics.120.303059</oup_id><sourcerecordid>2395862900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxYO0qLV-AkECfenLbpPJZHbyUqiLrYVVX6yvIZO5WSPZZJo_lv32TVkV9akQSEJ-99ycexA6oWROOWu_rMFDtjrNaUPmjDDCxR46pKJls6Zj9N2L8wH6kNI9IaQTvN9HB6whVPRtf4jkZXHZTg7wKmiLl8HnGBw-30KaQsZXZTNAxLcqWpVt8LiufAf4wvrxj_XrhIPBZ1ZvtSsJK7_1yit8VnKGaJyF9BG9N8olOH7cj9Cv7-c3y4vZ6vrHz-W31Uy3zSLPeKt73dNmHNnQGDBGCeD1AkJo0y46YfhCD1x3hmsqyKAU4xRGULXcjN3IjtDXne5Uhg2MGqoP5eQU7UbFrQzKytcv3t7JdXiQizpLwWgV-PwoEMPvAinLjU0anFMeQkmyqQ3bntKWV_TTG_Q-lOirvUrVAXeNIKRSbEfpGFKKYJ4_Q4n8F6B8ClDWAOUuwFp1-tLHc81TYhWY74BQpv9S_Askcar7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395862900</pqid></control><display><type>article</type><title>Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies</title><source>Freely Accessible Journals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Rivera-Colón, Angel G ; Westerman, Erica L ; Van Belleghem, Steven M ; Monteiro, Antónia ; Papa, Riccardo</creator><creatorcontrib>Rivera-Colón, Angel G ; Westerman, Erica L ; Van Belleghem, Steven M ; Monteiro, Antónia ; Papa, Riccardo</creatorcontrib><description>Abstract
Body plans often evolve through changes in the number of repeated parts or serial homologs. Using the butterfly Bicyclus anynana, RiveraColón et al. studied the genetics underlying heritability...
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input–output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input–output genes.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.120.303059</identifier><identifier>PMID: 32019848</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Abdomen ; Animal behavior ; Animals ; Bicyclus anynana ; Breeding ; Butterflies & moths ; Butterflies - genetics ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Evolution ; Evolutionary genetics ; Eyespot ; Gene loci ; Genes ; Genes, Insect ; Genetic diversity ; Genetic Variation ; Genetics ; Genome-wide association studies ; Genomes ; Heritability ; Homology ; Hypotheses ; Investigations ; Laboratories ; Multifactorial Inheritance ; Mutation ; Offspring ; Pigmentation ; Polygenic inheritance ; Regulation ; Wings, Animal - metabolism</subject><ispartof>Genetics (Austin), 2020-04, Vol.214 (4), p.1059-1078</ispartof><rights>Genetics 2020 2020</rights><rights>Copyright © 2020 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Apr 2020</rights><rights>Copyright © 2020 by the Genetics Society of America 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3</citedby><cites>FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3</cites><orcidid>0000-0001-9399-1007 ; 0000-0002-7986-9993 ; 0000-0001-9097-3241 ; 0000-0002-3575-8298 ; 0000-0001-9696-459X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32019848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera-Colón, Angel G</creatorcontrib><creatorcontrib>Westerman, Erica L</creatorcontrib><creatorcontrib>Van Belleghem, Steven M</creatorcontrib><creatorcontrib>Monteiro, Antónia</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><title>Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract
Body plans often evolve through changes in the number of repeated parts or serial homologs. Using the butterfly Bicyclus anynana, RiveraColón et al. studied the genetics underlying heritability...
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input–output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input–output genes.</description><subject>Abdomen</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Bicyclus anynana</subject><subject>Breeding</subject><subject>Butterflies & moths</subject><subject>Butterflies - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Eyespot</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genes, Insect</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Heritability</subject><subject>Homology</subject><subject>Hypotheses</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Multifactorial Inheritance</subject><subject>Mutation</subject><subject>Offspring</subject><subject>Pigmentation</subject><subject>Polygenic inheritance</subject><subject>Regulation</subject><subject>Wings, Animal - metabolism</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkV9LHDEUxYO0qLV-AkECfenLbpPJZHbyUqiLrYVVX6yvIZO5WSPZZJo_lv32TVkV9akQSEJ-99ycexA6oWROOWu_rMFDtjrNaUPmjDDCxR46pKJls6Zj9N2L8wH6kNI9IaQTvN9HB6whVPRtf4jkZXHZTg7wKmiLl8HnGBw-30KaQsZXZTNAxLcqWpVt8LiufAf4wvrxj_XrhIPBZ1ZvtSsJK7_1yit8VnKGaJyF9BG9N8olOH7cj9Cv7-c3y4vZ6vrHz-W31Uy3zSLPeKt73dNmHNnQGDBGCeD1AkJo0y46YfhCD1x3hmsqyKAU4xRGULXcjN3IjtDXne5Uhg2MGqoP5eQU7UbFrQzKytcv3t7JdXiQizpLwWgV-PwoEMPvAinLjU0anFMeQkmyqQ3bntKWV_TTG_Q-lOirvUrVAXeNIKRSbEfpGFKKYJ4_Q4n8F6B8ClDWAOUuwFp1-tLHc81TYhWY74BQpv9S_Askcar7</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Rivera-Colón, Angel G</creator><creator>Westerman, Erica L</creator><creator>Van Belleghem, Steven M</creator><creator>Monteiro, Antónia</creator><creator>Papa, Riccardo</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9399-1007</orcidid><orcidid>https://orcid.org/0000-0002-7986-9993</orcidid><orcidid>https://orcid.org/0000-0001-9097-3241</orcidid><orcidid>https://orcid.org/0000-0002-3575-8298</orcidid><orcidid>https://orcid.org/0000-0001-9696-459X</orcidid></search><sort><creationdate>20200401</creationdate><title>Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies</title><author>Rivera-Colón, Angel G ; Westerman, Erica L ; Van Belleghem, Steven M ; Monteiro, Antónia ; Papa, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abdomen</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Bicyclus anynana</topic><topic>Breeding</topic><topic>Butterflies & moths</topic><topic>Butterflies - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Eyespot</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genes, Insect</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Heritability</topic><topic>Homology</topic><topic>Hypotheses</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Multifactorial Inheritance</topic><topic>Mutation</topic><topic>Offspring</topic><topic>Pigmentation</topic><topic>Polygenic inheritance</topic><topic>Regulation</topic><topic>Wings, Animal - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera-Colón, Angel G</creatorcontrib><creatorcontrib>Westerman, Erica L</creatorcontrib><creatorcontrib>Van Belleghem, Steven M</creatorcontrib><creatorcontrib>Monteiro, Antónia</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Database (Proquest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera-Colón, Angel G</au><au>Westerman, Erica L</au><au>Van Belleghem, Steven M</au><au>Monteiro, Antónia</au><au>Papa, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>214</volume><issue>4</issue><spage>1059</spage><epage>1078</epage><pages>1059-1078</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract
Body plans often evolve through changes in the number of repeated parts or serial homologs. Using the butterfly Bicyclus anynana, RiveraColón et al. studied the genetics underlying heritability...
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input–output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input–output genes.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32019848</pmid><doi>10.1534/genetics.120.303059</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9399-1007</orcidid><orcidid>https://orcid.org/0000-0002-7986-9993</orcidid><orcidid>https://orcid.org/0000-0001-9097-3241</orcidid><orcidid>https://orcid.org/0000-0002-3575-8298</orcidid><orcidid>https://orcid.org/0000-0001-9696-459X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2020-04, Vol.214 (4), p.1059-1078 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7153931 |
source | Freely Accessible Journals; Oxford Journals Online; Alma/SFX Local Collection |
subjects | Abdomen Animal behavior Animals Bicyclus anynana Breeding Butterflies & moths Butterflies - genetics Deoxyribonucleic acid DNA DNA sequencing Evolution Evolutionary genetics Eyespot Gene loci Genes Genes, Insect Genetic diversity Genetic Variation Genetics Genome-wide association studies Genomes Heritability Homology Hypotheses Investigations Laboratories Multifactorial Inheritance Mutation Offspring Pigmentation Polygenic inheritance Regulation Wings, Animal - metabolism |
title | Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Loci%20Control%20Eyespot%20Number%20Variation%20on%20the%20Hindwings%20of%20Bicyclus%20anynana%20Butterflies&rft.jtitle=Genetics%20(Austin)&rft.au=Rivera-Col%C3%B3n,%20Angel%20G&rft.date=2020-04-01&rft.volume=214&rft.issue=4&rft.spage=1059&rft.epage=1078&rft.pages=1059-1078&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1534/genetics.120.303059&rft_dat=%3Cproquest_pubme%3E2395862900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-54c8c812dd3b2feffa9e5dd3e99cf4769f57cb5c6f5c190baa351edeac42fd6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395862900&rft_id=info:pmid/32019848&rft_oup_id=10.1534/genetics.120.303059&rfr_iscdi=true |