Loading…

Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes

The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the correspondin...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2020-03, Vol.26 (15), p.3420-3434
Main Authors: Geiger, Thomas, Schundelmeier, Simon, Hummel, Thorsten, Ströbele, Markus, Leis, Wolfgang, Seitz, Michael, Zeiser, Clemens, Moretti, Luca, Maiuri, Margherita, Cerullo, Giulio, Broch, Katharina, Vahland, Jörn, Leo, Karl, Maichle‐Mössmer, Cäcilia, Speiser, Bernd, Bettinger, Holger F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503
cites cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503
container_end_page 3434
container_issue 15
container_start_page 3420
container_title Chemistry : a European journal
container_volume 26
creator Geiger, Thomas
Schundelmeier, Simon
Hummel, Thorsten
Ströbele, Markus
Leis, Wolfgang
Seitz, Michael
Zeiser, Clemens
Moretti, Luca
Maiuri, Margherita
Cerullo, Giulio
Broch, Katharina
Vahland, Jörn
Leo, Karl
Maichle‐Mössmer, Cäcilia
Speiser, Bernd
Bettinger, Holger F.
description The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively. Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.
doi_str_mv 10.1002/chem.201905843
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346294351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhiME4paDlhJFoqHJYsd2ElMgodUeh3SnK7LUluNMdn1K7MUfoO34Ceh-Ir8Ehz2Wj4ZqinnmmRm9WfYcoyVGqHytdjAtS4Q5Yg0lD7IFZiUuSF2xh9kCcVoXFSP8LHvi_S1CiFeEPM7OCOYNazheZHfXto-jDNps87CDfD2CCs4arXJp-ry1o-6_f_3WBhkgb4OLKkQHuR3yG7eVM9bCpJU1fepY5_PukLc6wDyzB6WHmYidDzrEoK15k2_SlpX0Px0bCE4OY7TO7sEEqcCAf5o9GuTo4dl9Pc8-Xqw3q8vi6ub9h9W7q0IxxEgBA-3pgMr0BpaY1ojxXrFeAuKSctVTJnlddgoq4ESCqqFBXVmXiMqEM0TOs7dH7z52E_RpdzpmFHunJ-kOwkot_u4YvRNb-1nUmNGa4iR4dS9w9lMEH8SkvYJxlAZs9KIktCo5JWxGX_6D3troTHovUXVVIYybmVoeKeWs9w6G0zEYiTluMcctTnGngRd_vnDCf-WbAH4EvugRDv_RidXl-vq3_Aezs7yf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376601181</pqid></control><display><type>article</type><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</creator><creatorcontrib>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</creatorcontrib><description>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively. Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201905843</identifier><identifier>PMID: 31985891</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acenes ; Cations ; Chemical compounds ; Chemical reactions ; Chemistry ; Crystal structure ; Dimerization ; Electric dipoles ; Electronics industry ; Field effect transistors ; Fission ; High temperature ; Isomers ; Optical transition ; organic field-effect transistors ; Organic semiconductors ; Semiconductor devices ; singlet fission ; Spectroscopy ; Substitution reactions ; synthesis ; Transistors</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (15), p.3420-3434</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</citedby><cites>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</cites><orcidid>0000-0001-5223-662X ; 0000-0002-9354-292X ; 0000-0001-8092-0752 ; 0000-0001-7638-1610 ; 0000-0002-9534-2702 ; 0000-0002-9313-2779 ; 0000-0001-9351-8551 ; 0000-0003-3313-1843 ; 0000-0001-5111-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31985891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiger, Thomas</creatorcontrib><creatorcontrib>Schundelmeier, Simon</creatorcontrib><creatorcontrib>Hummel, Thorsten</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Leis, Wolfgang</creatorcontrib><creatorcontrib>Seitz, Michael</creatorcontrib><creatorcontrib>Zeiser, Clemens</creatorcontrib><creatorcontrib>Moretti, Luca</creatorcontrib><creatorcontrib>Maiuri, Margherita</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Broch, Katharina</creatorcontrib><creatorcontrib>Vahland, Jörn</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><creatorcontrib>Maichle‐Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Speiser, Bernd</creatorcontrib><creatorcontrib>Bettinger, Holger F.</creatorcontrib><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively. Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</description><subject>acenes</subject><subject>Cations</subject><subject>Chemical compounds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Dimerization</subject><subject>Electric dipoles</subject><subject>Electronics industry</subject><subject>Field effect transistors</subject><subject>Fission</subject><subject>High temperature</subject><subject>Isomers</subject><subject>Optical transition</subject><subject>organic field-effect transistors</subject><subject>Organic semiconductors</subject><subject>Semiconductor devices</subject><subject>singlet fission</subject><subject>Spectroscopy</subject><subject>Substitution reactions</subject><subject>synthesis</subject><subject>Transistors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkT2P1DAQhiME4paDlhJFoqHJYsd2ElMgodUeh3SnK7LUluNMdn1K7MUfoO34Ceh-Ir8Ehz2Wj4ZqinnmmRm9WfYcoyVGqHytdjAtS4Q5Yg0lD7IFZiUuSF2xh9kCcVoXFSP8LHvi_S1CiFeEPM7OCOYNazheZHfXto-jDNps87CDfD2CCs4arXJp-ry1o-6_f_3WBhkgb4OLKkQHuR3yG7eVM9bCpJU1fepY5_PukLc6wDyzB6WHmYidDzrEoK15k2_SlpX0Px0bCE4OY7TO7sEEqcCAf5o9GuTo4dl9Pc8-Xqw3q8vi6ub9h9W7q0IxxEgBA-3pgMr0BpaY1ojxXrFeAuKSctVTJnlddgoq4ESCqqFBXVmXiMqEM0TOs7dH7z52E_RpdzpmFHunJ-kOwkot_u4YvRNb-1nUmNGa4iR4dS9w9lMEH8SkvYJxlAZs9KIktCo5JWxGX_6D3troTHovUXVVIYybmVoeKeWs9w6G0zEYiTluMcctTnGngRd_vnDCf-WbAH4EvugRDv_RidXl-vq3_Aezs7yf</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Geiger, Thomas</creator><creator>Schundelmeier, Simon</creator><creator>Hummel, Thorsten</creator><creator>Ströbele, Markus</creator><creator>Leis, Wolfgang</creator><creator>Seitz, Michael</creator><creator>Zeiser, Clemens</creator><creator>Moretti, Luca</creator><creator>Maiuri, Margherita</creator><creator>Cerullo, Giulio</creator><creator>Broch, Katharina</creator><creator>Vahland, Jörn</creator><creator>Leo, Karl</creator><creator>Maichle‐Mössmer, Cäcilia</creator><creator>Speiser, Bernd</creator><creator>Bettinger, Holger F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5223-662X</orcidid><orcidid>https://orcid.org/0000-0002-9354-292X</orcidid><orcidid>https://orcid.org/0000-0001-8092-0752</orcidid><orcidid>https://orcid.org/0000-0001-7638-1610</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-9313-2779</orcidid><orcidid>https://orcid.org/0000-0001-9351-8551</orcidid><orcidid>https://orcid.org/0000-0003-3313-1843</orcidid><orcidid>https://orcid.org/0000-0001-5111-8314</orcidid></search><sort><creationdate>20200312</creationdate><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><author>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acenes</topic><topic>Cations</topic><topic>Chemical compounds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Dimerization</topic><topic>Electric dipoles</topic><topic>Electronics industry</topic><topic>Field effect transistors</topic><topic>Fission</topic><topic>High temperature</topic><topic>Isomers</topic><topic>Optical transition</topic><topic>organic field-effect transistors</topic><topic>Organic semiconductors</topic><topic>Semiconductor devices</topic><topic>singlet fission</topic><topic>Spectroscopy</topic><topic>Substitution reactions</topic><topic>synthesis</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Thomas</creatorcontrib><creatorcontrib>Schundelmeier, Simon</creatorcontrib><creatorcontrib>Hummel, Thorsten</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Leis, Wolfgang</creatorcontrib><creatorcontrib>Seitz, Michael</creatorcontrib><creatorcontrib>Zeiser, Clemens</creatorcontrib><creatorcontrib>Moretti, Luca</creatorcontrib><creatorcontrib>Maiuri, Margherita</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Broch, Katharina</creatorcontrib><creatorcontrib>Vahland, Jörn</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><creatorcontrib>Maichle‐Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Speiser, Bernd</creatorcontrib><creatorcontrib>Bettinger, Holger F.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Thomas</au><au>Schundelmeier, Simon</au><au>Hummel, Thorsten</au><au>Ströbele, Markus</au><au>Leis, Wolfgang</au><au>Seitz, Michael</au><au>Zeiser, Clemens</au><au>Moretti, Luca</au><au>Maiuri, Margherita</au><au>Cerullo, Giulio</au><au>Broch, Katharina</au><au>Vahland, Jörn</au><au>Leo, Karl</au><au>Maichle‐Mössmer, Cäcilia</au><au>Speiser, Bernd</au><au>Bettinger, Holger F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>26</volume><issue>15</issue><spage>3420</spage><epage>3434</epage><pages>3420-3434</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively. Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31985891</pmid><doi>10.1002/chem.201905843</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5223-662X</orcidid><orcidid>https://orcid.org/0000-0002-9354-292X</orcidid><orcidid>https://orcid.org/0000-0001-8092-0752</orcidid><orcidid>https://orcid.org/0000-0001-7638-1610</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-9313-2779</orcidid><orcidid>https://orcid.org/0000-0001-9351-8551</orcidid><orcidid>https://orcid.org/0000-0003-3313-1843</orcidid><orcidid>https://orcid.org/0000-0001-5111-8314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-03, Vol.26 (15), p.3420-3434
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154741
source Wiley-Blackwell Read & Publish Collection
subjects acenes
Cations
Chemical compounds
Chemical reactions
Chemistry
Crystal structure
Dimerization
Electric dipoles
Electronics industry
Field effect transistors
Fission
High temperature
Isomers
Optical transition
organic field-effect transistors
Organic semiconductors
Semiconductor devices
singlet fission
Spectroscopy
Substitution reactions
synthesis
Transistors
title Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20Electronic%20and%20Solid%E2%80%90State%20Structure%20of%20Organic%20Semiconductors%20by%20Site%E2%80%90Specific%20Substitution:%20The%20Case%20of%20Tetrafluoropentacenes&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Geiger,%20Thomas&rft.date=2020-03-12&rft.volume=26&rft.issue=15&rft.spage=3420&rft.epage=3434&rft.pages=3420-3434&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201905843&rft_dat=%3Cproquest_pubme%3E2346294351%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376601181&rft_id=info:pmid/31985891&rfr_iscdi=true