Loading…
Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes
The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the correspondin...
Saved in:
Published in: | Chemistry : a European journal 2020-03, Vol.26 (15), p.3420-3434 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503 |
---|---|
cites | cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503 |
container_end_page | 3434 |
container_issue | 15 |
container_start_page | 3420 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Geiger, Thomas Schundelmeier, Simon Hummel, Thorsten Ströbele, Markus Leis, Wolfgang Seitz, Michael Zeiser, Clemens Moretti, Luca Maiuri, Margherita Cerullo, Giulio Broch, Katharina Vahland, Jörn Leo, Karl Maichle‐Mössmer, Cäcilia Speiser, Bernd Bettinger, Holger F. |
description | The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively.
Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors. |
doi_str_mv | 10.1002/chem.201905843 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346294351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhiME4paDlhJFoqHJYsd2ElMgodUeh3SnK7LUluNMdn1K7MUfoO34Ceh-Ir8Ehz2Wj4ZqinnmmRm9WfYcoyVGqHytdjAtS4Q5Yg0lD7IFZiUuSF2xh9kCcVoXFSP8LHvi_S1CiFeEPM7OCOYNazheZHfXto-jDNps87CDfD2CCs4arXJp-ry1o-6_f_3WBhkgb4OLKkQHuR3yG7eVM9bCpJU1fepY5_PukLc6wDyzB6WHmYidDzrEoK15k2_SlpX0Px0bCE4OY7TO7sEEqcCAf5o9GuTo4dl9Pc8-Xqw3q8vi6ub9h9W7q0IxxEgBA-3pgMr0BpaY1ojxXrFeAuKSctVTJnlddgoq4ESCqqFBXVmXiMqEM0TOs7dH7z52E_RpdzpmFHunJ-kOwkot_u4YvRNb-1nUmNGa4iR4dS9w9lMEH8SkvYJxlAZs9KIktCo5JWxGX_6D3troTHovUXVVIYybmVoeKeWs9w6G0zEYiTluMcctTnGngRd_vnDCf-WbAH4EvugRDv_RidXl-vq3_Aezs7yf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376601181</pqid></control><display><type>article</type><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</creator><creatorcontrib>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</creatorcontrib><description>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively.
Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201905843</identifier><identifier>PMID: 31985891</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acenes ; Cations ; Chemical compounds ; Chemical reactions ; Chemistry ; Crystal structure ; Dimerization ; Electric dipoles ; Electronics industry ; Field effect transistors ; Fission ; High temperature ; Isomers ; Optical transition ; organic field-effect transistors ; Organic semiconductors ; Semiconductor devices ; singlet fission ; Spectroscopy ; Substitution reactions ; synthesis ; Transistors</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (15), p.3420-3434</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</citedby><cites>FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</cites><orcidid>0000-0001-5223-662X ; 0000-0002-9354-292X ; 0000-0001-8092-0752 ; 0000-0001-7638-1610 ; 0000-0002-9534-2702 ; 0000-0002-9313-2779 ; 0000-0001-9351-8551 ; 0000-0003-3313-1843 ; 0000-0001-5111-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31985891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiger, Thomas</creatorcontrib><creatorcontrib>Schundelmeier, Simon</creatorcontrib><creatorcontrib>Hummel, Thorsten</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Leis, Wolfgang</creatorcontrib><creatorcontrib>Seitz, Michael</creatorcontrib><creatorcontrib>Zeiser, Clemens</creatorcontrib><creatorcontrib>Moretti, Luca</creatorcontrib><creatorcontrib>Maiuri, Margherita</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Broch, Katharina</creatorcontrib><creatorcontrib>Vahland, Jörn</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><creatorcontrib>Maichle‐Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Speiser, Bernd</creatorcontrib><creatorcontrib>Bettinger, Holger F.</creatorcontrib><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively.
Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</description><subject>acenes</subject><subject>Cations</subject><subject>Chemical compounds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Dimerization</subject><subject>Electric dipoles</subject><subject>Electronics industry</subject><subject>Field effect transistors</subject><subject>Fission</subject><subject>High temperature</subject><subject>Isomers</subject><subject>Optical transition</subject><subject>organic field-effect transistors</subject><subject>Organic semiconductors</subject><subject>Semiconductor devices</subject><subject>singlet fission</subject><subject>Spectroscopy</subject><subject>Substitution reactions</subject><subject>synthesis</subject><subject>Transistors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkT2P1DAQhiME4paDlhJFoqHJYsd2ElMgodUeh3SnK7LUluNMdn1K7MUfoO34Ceh-Ir8Ehz2Wj4ZqinnmmRm9WfYcoyVGqHytdjAtS4Q5Yg0lD7IFZiUuSF2xh9kCcVoXFSP8LHvi_S1CiFeEPM7OCOYNazheZHfXto-jDNps87CDfD2CCs4arXJp-ry1o-6_f_3WBhkgb4OLKkQHuR3yG7eVM9bCpJU1fepY5_PukLc6wDyzB6WHmYidDzrEoK15k2_SlpX0Px0bCE4OY7TO7sEEqcCAf5o9GuTo4dl9Pc8-Xqw3q8vi6ub9h9W7q0IxxEgBA-3pgMr0BpaY1ojxXrFeAuKSctVTJnlddgoq4ESCqqFBXVmXiMqEM0TOs7dH7z52E_RpdzpmFHunJ-kOwkot_u4YvRNb-1nUmNGa4iR4dS9w9lMEH8SkvYJxlAZs9KIktCo5JWxGX_6D3troTHovUXVVIYybmVoeKeWs9w6G0zEYiTluMcctTnGngRd_vnDCf-WbAH4EvugRDv_RidXl-vq3_Aezs7yf</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Geiger, Thomas</creator><creator>Schundelmeier, Simon</creator><creator>Hummel, Thorsten</creator><creator>Ströbele, Markus</creator><creator>Leis, Wolfgang</creator><creator>Seitz, Michael</creator><creator>Zeiser, Clemens</creator><creator>Moretti, Luca</creator><creator>Maiuri, Margherita</creator><creator>Cerullo, Giulio</creator><creator>Broch, Katharina</creator><creator>Vahland, Jörn</creator><creator>Leo, Karl</creator><creator>Maichle‐Mössmer, Cäcilia</creator><creator>Speiser, Bernd</creator><creator>Bettinger, Holger F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5223-662X</orcidid><orcidid>https://orcid.org/0000-0002-9354-292X</orcidid><orcidid>https://orcid.org/0000-0001-8092-0752</orcidid><orcidid>https://orcid.org/0000-0001-7638-1610</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-9313-2779</orcidid><orcidid>https://orcid.org/0000-0001-9351-8551</orcidid><orcidid>https://orcid.org/0000-0003-3313-1843</orcidid><orcidid>https://orcid.org/0000-0001-5111-8314</orcidid></search><sort><creationdate>20200312</creationdate><title>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</title><author>Geiger, Thomas ; Schundelmeier, Simon ; Hummel, Thorsten ; Ströbele, Markus ; Leis, Wolfgang ; Seitz, Michael ; Zeiser, Clemens ; Moretti, Luca ; Maiuri, Margherita ; Cerullo, Giulio ; Broch, Katharina ; Vahland, Jörn ; Leo, Karl ; Maichle‐Mössmer, Cäcilia ; Speiser, Bernd ; Bettinger, Holger F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acenes</topic><topic>Cations</topic><topic>Chemical compounds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Dimerization</topic><topic>Electric dipoles</topic><topic>Electronics industry</topic><topic>Field effect transistors</topic><topic>Fission</topic><topic>High temperature</topic><topic>Isomers</topic><topic>Optical transition</topic><topic>organic field-effect transistors</topic><topic>Organic semiconductors</topic><topic>Semiconductor devices</topic><topic>singlet fission</topic><topic>Spectroscopy</topic><topic>Substitution reactions</topic><topic>synthesis</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Thomas</creatorcontrib><creatorcontrib>Schundelmeier, Simon</creatorcontrib><creatorcontrib>Hummel, Thorsten</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Leis, Wolfgang</creatorcontrib><creatorcontrib>Seitz, Michael</creatorcontrib><creatorcontrib>Zeiser, Clemens</creatorcontrib><creatorcontrib>Moretti, Luca</creatorcontrib><creatorcontrib>Maiuri, Margherita</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Broch, Katharina</creatorcontrib><creatorcontrib>Vahland, Jörn</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><creatorcontrib>Maichle‐Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Speiser, Bernd</creatorcontrib><creatorcontrib>Bettinger, Holger F.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Thomas</au><au>Schundelmeier, Simon</au><au>Hummel, Thorsten</au><au>Ströbele, Markus</au><au>Leis, Wolfgang</au><au>Seitz, Michael</au><au>Zeiser, Clemens</au><au>Moretti, Luca</au><au>Maiuri, Margherita</au><au>Cerullo, Giulio</au><au>Broch, Katharina</au><au>Vahland, Jörn</au><au>Leo, Karl</au><au>Maichle‐Mössmer, Cäcilia</au><au>Speiser, Bernd</au><au>Bettinger, Holger F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>26</volume><issue>15</issue><spage>3420</spage><epage>3434</epage><pages>3420-3434</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The properties as well as solid‐state structures, singlet fission, and organic field‐effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13‐etheno‐bridged precursors by reaction with dimethyl 1,2,4,5‐tetrazine‐3,6‐dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π–π stacking. Although the energy of the first electric dipole‐allowed optical transition varies only within 370 cm−1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm−1 (0.20 eV) for radical cations and 1300 cm−1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet‐fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin‐film transistor (TFT) characteristics with electron mobilities of 2×10−3 and 6×10−2 cm2 V−1 s−1, respectively.
Under the influence of fluorine: The (photo‐)physical and chemical properties of tetrafluoropentacene regioisomers are altered considerably in dependence of the substitution pattern. The variation of the fluorination degree and pattern of pentacenes provides a useful model for gaining detailed insight into forces that control crystallization and for studying the structure–property relationships of these organic semiconductors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31985891</pmid><doi>10.1002/chem.201905843</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5223-662X</orcidid><orcidid>https://orcid.org/0000-0002-9354-292X</orcidid><orcidid>https://orcid.org/0000-0001-8092-0752</orcidid><orcidid>https://orcid.org/0000-0001-7638-1610</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-9313-2779</orcidid><orcidid>https://orcid.org/0000-0001-9351-8551</orcidid><orcidid>https://orcid.org/0000-0003-3313-1843</orcidid><orcidid>https://orcid.org/0000-0001-5111-8314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-03, Vol.26 (15), p.3420-3434 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154741 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | acenes Cations Chemical compounds Chemical reactions Chemistry Crystal structure Dimerization Electric dipoles Electronics industry Field effect transistors Fission High temperature Isomers Optical transition organic field-effect transistors Organic semiconductors Semiconductor devices singlet fission Spectroscopy Substitution reactions synthesis Transistors |
title | Modulating the Electronic and Solid‐State Structure of Organic Semiconductors by Site‐Specific Substitution: The Case of Tetrafluoropentacenes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20Electronic%20and%20Solid%E2%80%90State%20Structure%20of%20Organic%20Semiconductors%20by%20Site%E2%80%90Specific%20Substitution:%20The%20Case%20of%20Tetrafluoropentacenes&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Geiger,%20Thomas&rft.date=2020-03-12&rft.volume=26&rft.issue=15&rft.spage=3420&rft.epage=3434&rft.pages=3420-3434&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201905843&rft_dat=%3Cproquest_pubme%3E2346294351%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5053-ef4d4f028911a147059dc5dae09a49cd45a972bce6e93aec7e80b27204aa14503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376601181&rft_id=info:pmid/31985891&rfr_iscdi=true |