Loading…
Noninvasive Induction of Muscle Fiber Hypertrophy and Hyperplasia: Effects of High-Intensity Focused Electromagnetic Field Evaluated in an In-Vivo Porcine Model: A Pilot Study
Abstract Background High-intensity focused electromagnetic (HIFEM) field technology has been reported to increase muscle thickness and hypertrophy. However, this process has not yet been confirmed on a histologic level. Objectives The aim of this study was to evaluate in-vivo structural changes in s...
Saved in:
Published in: | Aesthetic surgery journal 2020-04, Vol.40 (5), p.568-574 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
High-intensity focused electromagnetic (HIFEM) field technology has been reported to increase muscle thickness and hypertrophy. However, this process has not yet been confirmed on a histologic level.
Objectives
The aim of this study was to evaluate in-vivo structural changes in striated porcine muscle tissue following HIFEM treatment.
Methods
Three Yorkshire pigs received four 30-minute HIFEM treatments applied to the biceps femoris muscle on 1 side only. The fourth pig served as a control subject. At baseline and 2 weeks after the last treatment, biopsy specimens of the muscle tissue were collected from the treatment site. The control pig underwent muscle biopsy from a similar but untreated site. Twenty-five histology slides were evaluated from each pig. A certified histopathologist analyzed sliced biopsy samples for structural changes in the tissue.
Results
Histologic analysis showed hypertrophic changes 2 weeks posttreatment. The muscle mass density increased by 20.56% (to a mean of 17,053.4 [5617.9] µm2) compared with baseline. Similarly, muscle fiber density (hyperplasia) increased: the average change in the number of fibers in a slice area of 136,533.3 µm2 was +8.0%. The mean size of an individual muscle fiber increased by 12.15% (to 332.23 [280.2] µm2) 2 weeks posttreatment. Control samples did not show any significant change in fiber density or hyperplasia.
Conclusions
Histopathologic quantification showed significant structural muscle changes through a combination of fiber hypertrophy and hyperplasia. Control biopsies showed a lack of similar changes. The data correlate with findings of other HIFEM research and suggest that HIFEM could be used for noninvasive induction of muscle growth. |
---|---|
ISSN: | 1090-820X 1527-330X |
DOI: | 10.1093/asj/sjz244 |