Loading…
Deep learning–based detection and segmentation-assisted management of brain metastases
Abstract Background Three-dimensional T1 magnetization prepared rapid acquisition gradient echo (3D-T1-MPRAGE) is preferred in detecting brain metastases (BM) among MRI. We developed an automatic deep learning–based detection and segmentation method for BM (named BMDS net) on 3D-T1-MPRAGE images and...
Saved in:
Published in: | Neuro-oncology (Charlottesville, Va.) Va.), 2020-04, Vol.22 (4), p.505-514 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Three-dimensional T1 magnetization prepared rapid acquisition gradient echo (3D-T1-MPRAGE) is preferred in detecting brain metastases (BM) among MRI. We developed an automatic deep learning–based detection and segmentation method for BM (named BMDS net) on 3D-T1-MPRAGE images and evaluated its performance.
Methods
The BMDS net is a cascaded 3D fully convolution network (FCN) to automatically detect and segment BM. In total, 1652 patients with 3D-T1-MPRAGE images from 3 hospitals (n = 1201, 231, and 220, respectively) were retrospectively included. Manual segmentations were obtained by a neuroradiologist and a radiation oncologist in a consensus reading in 3D-T1-MPRAGE images. Sensitivity, specificity, and dice ratio of the segmentation were evaluated. Specificity and sensitivity measure the fractions of relevant segmented voxels. Dice ratio was used to quantitatively measure the overlap between automatic and manual segmentation results. Paired samples t-tests and analysis of variance were employed for statistical analysis.
Results
The BMDS net can detect all BM, providing a detection result with an accuracy of 100%. Automatic segmentations correlated strongly with manual segmentations through 4-fold cross-validation of the dataset with 1201 patients: the sensitivity was 0.96 ± 0.03 (range, 0.84–0.99), the specificity was 0.99 ± 0.0002 (range, 0.99–1.00), and the dice ratio was 0.85 ± 0.08 (range, 0.62–0.95) for total tumor volume. Similar performances on the other 2 datasets also demonstrate the robustness of BMDS net in correctly detecting and segmenting BM in various settings.
Conclusions
The BMDS net yields accurate detection and segmentation of BM automatically and could assist stereotactic radiotherapy management for diagnosis, therapy planning, and follow-up. |
---|---|
ISSN: | 1522-8517 1523-5866 |
DOI: | 10.1093/neuonc/noz234 |