Loading…
Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression
Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models c...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2020-04, Vol.40 (4), p.808-822 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73 |
container_end_page | 822 |
container_issue | 4 |
container_start_page | 808 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 40 |
creator | Böhm, Maximilian Chung, David Y Gómez, Carlos A Qin, Tao Takizawa, Tsubasa Sadeghian, Homa Sugimoto, Kazutaka Sakadžić, Sava Yaseen, Mohammad A Ayata, Cenk |
description | Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies. |
doi_str_mv | 10.1177/0271678X19845934 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X19845934</sage_id><sourcerecordid>2232134534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</originalsourceid><addsrcrecordid>eNp1UcFu1TAQtBAVfRTunFCOHAi1Yzt2OCBVFbRIT3ABiZvlOJvXVIkdvPGT-i38LE5fW9FKnHbtmZ1Z7RDyhtEPjCl1SivFaqV_sUYL2XDxjGyYlE2pKKufk80Klyt-TF4iXlNKNZfyBTnmjNac0mZD_nyDFMPeokujjYULaR4Hvyu6FNcS5iXswMMyuKJP3i1D8HYsbG72dn18LLbBrT--KyJMYYECl2FKY8IyAs7BIxTuysY8AnHImMP3t-ysdm_W3hQ4R7DdrTPkFjFrvyJHvR0RXt_VE_Lzy-cf55fl9vvF1_OzbemkUEsJTrMealYxLvu2Y7QFCZVona61YLxqlKK1q_KNFBe65doyJ23fadFo7ZziJ-TTQXdO7QSdA79EO5o5DpONNybYwTxG_HBldmFv8vG1alaBd3cCMfxOgIuZBnQwjtZDSGiqiuflhOQiU-mB6mJAjNA_2DBq1kzN00zzyNt_13sYuA8xE8oDAe0OzHVIMWeE_xf8C5QPr74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232134534</pqid></control><display><type>article</type><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><source>PubMed Central Free</source><source>SAGE</source><creator>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</creator><creatorcontrib>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</creatorcontrib><description>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X19845934</identifier><identifier>PMID: 31063009</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Cerebrovascular Circulation - physiology ; Cortical Spreading Depression - physiology ; Electric Stimulation ; Evoked Potentials - physiology ; Hyperemia - physiopathology ; Male ; Mice ; Mice, Transgenic ; Motor Cortex - blood supply ; Neurovascular Coupling - physiology ; Optogenetics - methods ; Original ; Physical Stimulation ; Somatosensory Cortex - blood supply ; Vibrissae - physiology</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-04, Vol.40 (4), p.808-822</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019 2019 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</citedby><cites>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</cites><orcidid>0000-0002-7149-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168797/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168797/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31063009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Böhm, Maximilian</creatorcontrib><creatorcontrib>Chung, David Y</creatorcontrib><creatorcontrib>Gómez, Carlos A</creatorcontrib><creatorcontrib>Qin, Tao</creatorcontrib><creatorcontrib>Takizawa, Tsubasa</creatorcontrib><creatorcontrib>Sadeghian, Homa</creatorcontrib><creatorcontrib>Sugimoto, Kazutaka</creatorcontrib><creatorcontrib>Sakadžić, Sava</creatorcontrib><creatorcontrib>Yaseen, Mohammad A</creatorcontrib><creatorcontrib>Ayata, Cenk</creatorcontrib><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</description><subject>Animals</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials - physiology</subject><subject>Hyperemia - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor Cortex - blood supply</subject><subject>Neurovascular Coupling - physiology</subject><subject>Optogenetics - methods</subject><subject>Original</subject><subject>Physical Stimulation</subject><subject>Somatosensory Cortex - blood supply</subject><subject>Vibrissae - physiology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UcFu1TAQtBAVfRTunFCOHAi1Yzt2OCBVFbRIT3ABiZvlOJvXVIkdvPGT-i38LE5fW9FKnHbtmZ1Z7RDyhtEPjCl1SivFaqV_sUYL2XDxjGyYlE2pKKufk80Klyt-TF4iXlNKNZfyBTnmjNac0mZD_nyDFMPeokujjYULaR4Hvyu6FNcS5iXswMMyuKJP3i1D8HYsbG72dn18LLbBrT--KyJMYYECl2FKY8IyAs7BIxTuysY8AnHImMP3t-ysdm_W3hQ4R7DdrTPkFjFrvyJHvR0RXt_VE_Lzy-cf55fl9vvF1_OzbemkUEsJTrMealYxLvu2Y7QFCZVona61YLxqlKK1q_KNFBe65doyJ23fadFo7ZziJ-TTQXdO7QSdA79EO5o5DpONNybYwTxG_HBldmFv8vG1alaBd3cCMfxOgIuZBnQwjtZDSGiqiuflhOQiU-mB6mJAjNA_2DBq1kzN00zzyNt_13sYuA8xE8oDAe0OzHVIMWeE_xf8C5QPr74</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Böhm, Maximilian</creator><creator>Chung, David Y</creator><creator>Gómez, Carlos A</creator><creator>Qin, Tao</creator><creator>Takizawa, Tsubasa</creator><creator>Sadeghian, Homa</creator><creator>Sugimoto, Kazutaka</creator><creator>Sakadžić, Sava</creator><creator>Yaseen, Mohammad A</creator><creator>Ayata, Cenk</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7149-5851</orcidid></search><sort><creationdate>20200401</creationdate><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><author>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials - physiology</topic><topic>Hyperemia - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor Cortex - blood supply</topic><topic>Neurovascular Coupling - physiology</topic><topic>Optogenetics - methods</topic><topic>Original</topic><topic>Physical Stimulation</topic><topic>Somatosensory Cortex - blood supply</topic><topic>Vibrissae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Maximilian</creatorcontrib><creatorcontrib>Chung, David Y</creatorcontrib><creatorcontrib>Gómez, Carlos A</creatorcontrib><creatorcontrib>Qin, Tao</creatorcontrib><creatorcontrib>Takizawa, Tsubasa</creatorcontrib><creatorcontrib>Sadeghian, Homa</creatorcontrib><creatorcontrib>Sugimoto, Kazutaka</creatorcontrib><creatorcontrib>Sakadžić, Sava</creatorcontrib><creatorcontrib>Yaseen, Mohammad A</creatorcontrib><creatorcontrib>Ayata, Cenk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Maximilian</au><au>Chung, David Y</au><au>Gómez, Carlos A</au><au>Qin, Tao</au><au>Takizawa, Tsubasa</au><au>Sadeghian, Homa</au><au>Sugimoto, Kazutaka</au><au>Sakadžić, Sava</au><au>Yaseen, Mohammad A</au><au>Ayata, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>40</volume><issue>4</issue><spage>808</spage><epage>822</epage><pages>808-822</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31063009</pmid><doi>10.1177/0271678X19845934</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7149-5851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2020-04, Vol.40 (4), p.808-822 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168797 |
source | PubMed Central Free; SAGE |
subjects | Animals Cerebrovascular Circulation - physiology Cortical Spreading Depression - physiology Electric Stimulation Evoked Potentials - physiology Hyperemia - physiopathology Male Mice Mice, Transgenic Motor Cortex - blood supply Neurovascular Coupling - physiology Optogenetics - methods Original Physical Stimulation Somatosensory Cortex - blood supply Vibrissae - physiology |
title | Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurovascular%20coupling%20during%20optogenetic%20functional%20activation:%20Local%20and%20remote%20stimulus-response%20characteristics,%20and%20uncoupling%20by%20spreading%20depression&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=B%C3%B6hm,%20Maximilian&rft.date=2020-04-01&rft.volume=40&rft.issue=4&rft.spage=808&rft.epage=822&rft.pages=808-822&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X19845934&rft_dat=%3Cproquest_pubme%3E2232134534%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232134534&rft_id=info:pmid/31063009&rft_sage_id=10.1177_0271678X19845934&rfr_iscdi=true |