Loading…

Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression

Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2020-04, Vol.40 (4), p.808-822
Main Authors: Böhm, Maximilian, Chung, David Y, Gómez, Carlos A, Qin, Tao, Takizawa, Tsubasa, Sadeghian, Homa, Sugimoto, Kazutaka, Sakadžić, Sava, Yaseen, Mohammad A, Ayata, Cenk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73
cites cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73
container_end_page 822
container_issue 4
container_start_page 808
container_title Journal of cerebral blood flow and metabolism
container_volume 40
creator Böhm, Maximilian
Chung, David Y
Gómez, Carlos A
Qin, Tao
Takizawa, Tsubasa
Sadeghian, Homa
Sugimoto, Kazutaka
Sakadžić, Sava
Yaseen, Mohammad A
Ayata, Cenk
description Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.
doi_str_mv 10.1177/0271678X19845934
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X19845934</sage_id><sourcerecordid>2232134534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</originalsourceid><addsrcrecordid>eNp1UcFu1TAQtBAVfRTunFCOHAi1Yzt2OCBVFbRIT3ABiZvlOJvXVIkdvPGT-i38LE5fW9FKnHbtmZ1Z7RDyhtEPjCl1SivFaqV_sUYL2XDxjGyYlE2pKKufk80Klyt-TF4iXlNKNZfyBTnmjNac0mZD_nyDFMPeokujjYULaR4Hvyu6FNcS5iXswMMyuKJP3i1D8HYsbG72dn18LLbBrT--KyJMYYECl2FKY8IyAs7BIxTuysY8AnHImMP3t-ysdm_W3hQ4R7DdrTPkFjFrvyJHvR0RXt_VE_Lzy-cf55fl9vvF1_OzbemkUEsJTrMealYxLvu2Y7QFCZVona61YLxqlKK1q_KNFBe65doyJ23fadFo7ZziJ-TTQXdO7QSdA79EO5o5DpONNybYwTxG_HBldmFv8vG1alaBd3cCMfxOgIuZBnQwjtZDSGiqiuflhOQiU-mB6mJAjNA_2DBq1kzN00zzyNt_13sYuA8xE8oDAe0OzHVIMWeE_xf8C5QPr74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232134534</pqid></control><display><type>article</type><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><source>PubMed Central Free</source><source>SAGE</source><creator>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</creator><creatorcontrib>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</creatorcontrib><description>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (&gt;50% CBF increase), and remotely within the ipsilateral motor cortex (&gt;30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X19845934</identifier><identifier>PMID: 31063009</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Cerebrovascular Circulation - physiology ; Cortical Spreading Depression - physiology ; Electric Stimulation ; Evoked Potentials - physiology ; Hyperemia - physiopathology ; Male ; Mice ; Mice, Transgenic ; Motor Cortex - blood supply ; Neurovascular Coupling - physiology ; Optogenetics - methods ; Original ; Physical Stimulation ; Somatosensory Cortex - blood supply ; Vibrissae - physiology</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-04, Vol.40 (4), p.808-822</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019 2019 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</citedby><cites>FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</cites><orcidid>0000-0002-7149-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168797/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168797/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31063009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Böhm, Maximilian</creatorcontrib><creatorcontrib>Chung, David Y</creatorcontrib><creatorcontrib>Gómez, Carlos A</creatorcontrib><creatorcontrib>Qin, Tao</creatorcontrib><creatorcontrib>Takizawa, Tsubasa</creatorcontrib><creatorcontrib>Sadeghian, Homa</creatorcontrib><creatorcontrib>Sugimoto, Kazutaka</creatorcontrib><creatorcontrib>Sakadžić, Sava</creatorcontrib><creatorcontrib>Yaseen, Mohammad A</creatorcontrib><creatorcontrib>Ayata, Cenk</creatorcontrib><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (&gt;50% CBF increase), and remotely within the ipsilateral motor cortex (&gt;30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</description><subject>Animals</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials - physiology</subject><subject>Hyperemia - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor Cortex - blood supply</subject><subject>Neurovascular Coupling - physiology</subject><subject>Optogenetics - methods</subject><subject>Original</subject><subject>Physical Stimulation</subject><subject>Somatosensory Cortex - blood supply</subject><subject>Vibrissae - physiology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UcFu1TAQtBAVfRTunFCOHAi1Yzt2OCBVFbRIT3ABiZvlOJvXVIkdvPGT-i38LE5fW9FKnHbtmZ1Z7RDyhtEPjCl1SivFaqV_sUYL2XDxjGyYlE2pKKufk80Klyt-TF4iXlNKNZfyBTnmjNac0mZD_nyDFMPeokujjYULaR4Hvyu6FNcS5iXswMMyuKJP3i1D8HYsbG72dn18LLbBrT--KyJMYYECl2FKY8IyAs7BIxTuysY8AnHImMP3t-ysdm_W3hQ4R7DdrTPkFjFrvyJHvR0RXt_VE_Lzy-cf55fl9vvF1_OzbemkUEsJTrMealYxLvu2Y7QFCZVona61YLxqlKK1q_KNFBe65doyJ23fadFo7ZziJ-TTQXdO7QSdA79EO5o5DpONNybYwTxG_HBldmFv8vG1alaBd3cCMfxOgIuZBnQwjtZDSGiqiuflhOQiU-mB6mJAjNA_2DBq1kzN00zzyNt_13sYuA8xE8oDAe0OzHVIMWeE_xf8C5QPr74</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Böhm, Maximilian</creator><creator>Chung, David Y</creator><creator>Gómez, Carlos A</creator><creator>Qin, Tao</creator><creator>Takizawa, Tsubasa</creator><creator>Sadeghian, Homa</creator><creator>Sugimoto, Kazutaka</creator><creator>Sakadžić, Sava</creator><creator>Yaseen, Mohammad A</creator><creator>Ayata, Cenk</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7149-5851</orcidid></search><sort><creationdate>20200401</creationdate><title>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</title><author>Böhm, Maximilian ; Chung, David Y ; Gómez, Carlos A ; Qin, Tao ; Takizawa, Tsubasa ; Sadeghian, Homa ; Sugimoto, Kazutaka ; Sakadžić, Sava ; Yaseen, Mohammad A ; Ayata, Cenk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials - physiology</topic><topic>Hyperemia - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor Cortex - blood supply</topic><topic>Neurovascular Coupling - physiology</topic><topic>Optogenetics - methods</topic><topic>Original</topic><topic>Physical Stimulation</topic><topic>Somatosensory Cortex - blood supply</topic><topic>Vibrissae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Maximilian</creatorcontrib><creatorcontrib>Chung, David Y</creatorcontrib><creatorcontrib>Gómez, Carlos A</creatorcontrib><creatorcontrib>Qin, Tao</creatorcontrib><creatorcontrib>Takizawa, Tsubasa</creatorcontrib><creatorcontrib>Sadeghian, Homa</creatorcontrib><creatorcontrib>Sugimoto, Kazutaka</creatorcontrib><creatorcontrib>Sakadžić, Sava</creatorcontrib><creatorcontrib>Yaseen, Mohammad A</creatorcontrib><creatorcontrib>Ayata, Cenk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Maximilian</au><au>Chung, David Y</au><au>Gómez, Carlos A</au><au>Qin, Tao</au><au>Takizawa, Tsubasa</au><au>Sadeghian, Homa</au><au>Sugimoto, Kazutaka</au><au>Sakadžić, Sava</au><au>Yaseen, Mohammad A</au><au>Ayata, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>40</volume><issue>4</issue><spage>808</spage><epage>822</epage><pages>808-822</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (&gt;50% CBF increase), and remotely within the ipsilateral motor cortex (&gt;30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31063009</pmid><doi>10.1177/0271678X19845934</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7149-5851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2020-04, Vol.40 (4), p.808-822
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168797
source PubMed Central Free; SAGE
subjects Animals
Cerebrovascular Circulation - physiology
Cortical Spreading Depression - physiology
Electric Stimulation
Evoked Potentials - physiology
Hyperemia - physiopathology
Male
Mice
Mice, Transgenic
Motor Cortex - blood supply
Neurovascular Coupling - physiology
Optogenetics - methods
Original
Physical Stimulation
Somatosensory Cortex - blood supply
Vibrissae - physiology
title Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurovascular%20coupling%20during%20optogenetic%20functional%20activation:%20Local%20and%20remote%20stimulus-response%20characteristics,%20and%20uncoupling%20by%20spreading%20depression&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=B%C3%B6hm,%20Maximilian&rft.date=2020-04-01&rft.volume=40&rft.issue=4&rft.spage=808&rft.epage=822&rft.pages=808-822&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X19845934&rft_dat=%3Cproquest_pubme%3E2232134534%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c547t-ec81fe612135fbd10be5e24bc868413297706c21987348b38a1c5afd84988cc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232134534&rft_id=info:pmid/31063009&rft_sage_id=10.1177_0271678X19845934&rfr_iscdi=true