Loading…
Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling
Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. The...
Saved in:
Published in: | Climatic change 2016-12, Vol.139 (3-4), p.551-564 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3 |
container_end_page | 564 |
container_issue | 3-4 |
container_start_page | 551 |
container_title | Climatic change |
container_volume | 139 |
creator | Wallach, Daniel Mearns, Linda O. Ruane, Alexander C. Roetter, Reimund P. Asseng, Senthold |
description | Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor. |
doi_str_mv | 10.1007/s10584-016-1803-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000453402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rj6AwSRgBc9tKby0UlfhGVcXWFEEPcc0p1kppfuZEx6Fvz3pu11WPfgekqRet6q5K1C6DmQt0CIfJeBCMUrAnUFirAKHqAVCFkCrshDtCoJURFCmhP0JOerOZK0foxOGGVCMClW6NvG5RxDxj7FEa-HfjSTw1-idUMftjgGPO0c_uByvw3YBIsvs8PR4_OQ3dgOrghjwusU90fRU_TImyG7ZzfnKbr8eP59fVFtvn76vD7bVF1N-VS5xkruLXgJLXjSKAuKtmBZI0XrO2HbzgqqpHHUCG6llw0RxnrWqc62xrNT9H6puz-0o7OdC1Myg96n8of0U0fT678zod_pbbzWEqSQQEuBN0uB3R3ZxdlGz3fFP8IbJa6hsK9vmqX44-DypMc-d24YTHDxkDUtz66lEIrej5Y5cME4uR8FpUjBlGD_gdaKMWBEFvTVHfQqHlIosygUpxya5vfvYaG6FHNOzh8tAKLn9dLLes0u6Hm99OzCy9uWHxV_9qkAdAFySYWtS7da_6Pqi0UUTDa6zGr2qFhPAAQA-wVPZuCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842419912</pqid></control><display><type>article</type><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</creator><creatorcontrib>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</creatorcontrib><description>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-016-1803-1</identifier><identifier>PMID: 32355375</identifier><identifier>CODEN: CLCHDX</identifier><language>eng</language><publisher>Goddard Space Flight Center: Springer Netherlands</publisher><subject>Agricultural production ; Agricultural sciences ; Atmospheric Sciences ; Biodiversity and Ecology ; Climate change ; Climate Change/Climate Change Impacts ; Climate models ; Collaboration ; Criteria ; crop models ; Crops ; Earth and Environmental Science ; Earth Sciences ; Environmental Sciences ; Life Sciences ; Mathematical models ; Meteorology And Climatology ; Modelling ; prediction ; Sampling ; Statistical analysis ; Statistical models ; Uncertainty</subject><ispartof>Climatic change, 2016-12, Vol.139 (3-4), p.551-564</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016.</rights><rights>Climatic Change is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</citedby><cites>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</cites><orcidid>0000-0003-3500-8179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1842419912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1842419912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11668,27903,27904,36039,36040,44342,74642</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32355375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01604985$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallach, Daniel</creatorcontrib><creatorcontrib>Mearns, Linda O.</creatorcontrib><creatorcontrib>Ruane, Alexander C.</creatorcontrib><creatorcontrib>Roetter, Reimund P.</creatorcontrib><creatorcontrib>Asseng, Senthold</creatorcontrib><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><addtitle>Clim Change</addtitle><description>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</description><subject>Agricultural production</subject><subject>Agricultural sciences</subject><subject>Atmospheric Sciences</subject><subject>Biodiversity and Ecology</subject><subject>Climate change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate models</subject><subject>Collaboration</subject><subject>Criteria</subject><subject>crop models</subject><subject>Crops</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Meteorology And Climatology</subject><subject>Modelling</subject><subject>prediction</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Uncertainty</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkk2LFDEQhoMo7rj6AwSRgBc9tKby0UlfhGVcXWFEEPcc0p1kppfuZEx6Fvz3pu11WPfgekqRet6q5K1C6DmQt0CIfJeBCMUrAnUFirAKHqAVCFkCrshDtCoJURFCmhP0JOerOZK0foxOGGVCMClW6NvG5RxDxj7FEa-HfjSTw1-idUMftjgGPO0c_uByvw3YBIsvs8PR4_OQ3dgOrghjwusU90fRU_TImyG7ZzfnKbr8eP59fVFtvn76vD7bVF1N-VS5xkruLXgJLXjSKAuKtmBZI0XrO2HbzgqqpHHUCG6llw0RxnrWqc62xrNT9H6puz-0o7OdC1Myg96n8of0U0fT678zod_pbbzWEqSQQEuBN0uB3R3ZxdlGz3fFP8IbJa6hsK9vmqX44-DypMc-d24YTHDxkDUtz66lEIrej5Y5cME4uR8FpUjBlGD_gdaKMWBEFvTVHfQqHlIosygUpxya5vfvYaG6FHNOzh8tAKLn9dLLes0u6Hm99OzCy9uWHxV_9qkAdAFySYWtS7da_6Pqi0UUTDa6zGr2qFhPAAQA-wVPZuCk</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Wallach, Daniel</creator><creator>Mearns, Linda O.</creator><creator>Ruane, Alexander C.</creator><creator>Roetter, Reimund P.</creator><creator>Asseng, Senthold</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CYE</scope><scope>CYI</scope><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid></search><sort><creationdate>20161201</creationdate><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><author>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural production</topic><topic>Agricultural sciences</topic><topic>Atmospheric Sciences</topic><topic>Biodiversity and Ecology</topic><topic>Climate change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate models</topic><topic>Collaboration</topic><topic>Criteria</topic><topic>crop models</topic><topic>Crops</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Meteorology And Climatology</topic><topic>Modelling</topic><topic>prediction</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallach, Daniel</creatorcontrib><creatorcontrib>Mearns, Linda O.</creatorcontrib><creatorcontrib>Ruane, Alexander C.</creatorcontrib><creatorcontrib>Roetter, Reimund P.</creatorcontrib><creatorcontrib>Asseng, Senthold</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallach, Daniel</au><au>Mearns, Linda O.</au><au>Ruane, Alexander C.</au><au>Roetter, Reimund P.</au><au>Asseng, Senthold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><addtitle>Clim Change</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>139</volume><issue>3-4</issue><spage>551</spage><epage>564</epage><pages>551-564</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><coden>CLCHDX</coden><abstract>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</abstract><cop>Goddard Space Flight Center</cop><pub>Springer Netherlands</pub><pmid>32355375</pmid><doi>10.1007/s10584-016-1803-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0009 |
ispartof | Climatic change, 2016-12, Vol.139 (3-4), p.551-564 |
issn | 0165-0009 1573-1480 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175712 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Agricultural production Agricultural sciences Atmospheric Sciences Biodiversity and Ecology Climate change Climate Change/Climate Change Impacts Climate models Collaboration Criteria crop models Crops Earth and Environmental Science Earth Sciences Environmental Sciences Life Sciences Mathematical models Meteorology And Climatology Modelling prediction Sampling Statistical analysis Statistical models Uncertainty |
title | Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20from%20Climate%20Modeling%20on%20the%20Design%20and%20Use%20of%20Ensembles%20for%20Crop%20Modeling&rft.jtitle=Climatic%20change&rft.au=Wallach,%20Daniel&rft.date=2016-12-01&rft.volume=139&rft.issue=3-4&rft.spage=551&rft.epage=564&rft.pages=551-564&rft.issn=0165-0009&rft.eissn=1573-1480&rft.coden=CLCHDX&rft_id=info:doi/10.1007/s10584-016-1803-1&rft_dat=%3Cproquest_pubme%3E2000453402%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1842419912&rft_id=info:pmid/32355375&rfr_iscdi=true |