Loading…

Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling

Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. The...

Full description

Saved in:
Bibliographic Details
Published in:Climatic change 2016-12, Vol.139 (3-4), p.551-564
Main Authors: Wallach, Daniel, Mearns, Linda O., Ruane, Alexander C., Roetter, Reimund P., Asseng, Senthold
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3
cites cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3
container_end_page 564
container_issue 3-4
container_start_page 551
container_title Climatic change
container_volume 139
creator Wallach, Daniel
Mearns, Linda O.
Ruane, Alexander C.
Roetter, Reimund P.
Asseng, Senthold
description Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
doi_str_mv 10.1007/s10584-016-1803-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000453402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rj6AwSRgBc9tKby0UlfhGVcXWFEEPcc0p1kppfuZEx6Fvz3pu11WPfgekqRet6q5K1C6DmQt0CIfJeBCMUrAnUFirAKHqAVCFkCrshDtCoJURFCmhP0JOerOZK0foxOGGVCMClW6NvG5RxDxj7FEa-HfjSTw1-idUMftjgGPO0c_uByvw3YBIsvs8PR4_OQ3dgOrghjwusU90fRU_TImyG7ZzfnKbr8eP59fVFtvn76vD7bVF1N-VS5xkruLXgJLXjSKAuKtmBZI0XrO2HbzgqqpHHUCG6llw0RxnrWqc62xrNT9H6puz-0o7OdC1Myg96n8of0U0fT678zod_pbbzWEqSQQEuBN0uB3R3ZxdlGz3fFP8IbJa6hsK9vmqX44-DypMc-d24YTHDxkDUtz66lEIrej5Y5cME4uR8FpUjBlGD_gdaKMWBEFvTVHfQqHlIosygUpxya5vfvYaG6FHNOzh8tAKLn9dLLes0u6Hm99OzCy9uWHxV_9qkAdAFySYWtS7da_6Pqi0UUTDa6zGr2qFhPAAQA-wVPZuCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842419912</pqid></control><display><type>article</type><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</creator><creatorcontrib>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</creatorcontrib><description>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-016-1803-1</identifier><identifier>PMID: 32355375</identifier><identifier>CODEN: CLCHDX</identifier><language>eng</language><publisher>Goddard Space Flight Center: Springer Netherlands</publisher><subject>Agricultural production ; Agricultural sciences ; Atmospheric Sciences ; Biodiversity and Ecology ; Climate change ; Climate Change/Climate Change Impacts ; Climate models ; Collaboration ; Criteria ; crop models ; Crops ; Earth and Environmental Science ; Earth Sciences ; Environmental Sciences ; Life Sciences ; Mathematical models ; Meteorology And Climatology ; Modelling ; prediction ; Sampling ; Statistical analysis ; Statistical models ; Uncertainty</subject><ispartof>Climatic change, 2016-12, Vol.139 (3-4), p.551-564</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016.</rights><rights>Climatic Change is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</citedby><cites>FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</cites><orcidid>0000-0003-3500-8179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1842419912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1842419912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11668,27903,27904,36039,36040,44342,74642</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32355375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01604985$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallach, Daniel</creatorcontrib><creatorcontrib>Mearns, Linda O.</creatorcontrib><creatorcontrib>Ruane, Alexander C.</creatorcontrib><creatorcontrib>Roetter, Reimund P.</creatorcontrib><creatorcontrib>Asseng, Senthold</creatorcontrib><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><addtitle>Clim Change</addtitle><description>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</description><subject>Agricultural production</subject><subject>Agricultural sciences</subject><subject>Atmospheric Sciences</subject><subject>Biodiversity and Ecology</subject><subject>Climate change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate models</subject><subject>Collaboration</subject><subject>Criteria</subject><subject>crop models</subject><subject>Crops</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Meteorology And Climatology</subject><subject>Modelling</subject><subject>prediction</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Uncertainty</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkk2LFDEQhoMo7rj6AwSRgBc9tKby0UlfhGVcXWFEEPcc0p1kppfuZEx6Fvz3pu11WPfgekqRet6q5K1C6DmQt0CIfJeBCMUrAnUFirAKHqAVCFkCrshDtCoJURFCmhP0JOerOZK0foxOGGVCMClW6NvG5RxDxj7FEa-HfjSTw1-idUMftjgGPO0c_uByvw3YBIsvs8PR4_OQ3dgOrghjwusU90fRU_TImyG7ZzfnKbr8eP59fVFtvn76vD7bVF1N-VS5xkruLXgJLXjSKAuKtmBZI0XrO2HbzgqqpHHUCG6llw0RxnrWqc62xrNT9H6puz-0o7OdC1Myg96n8of0U0fT678zod_pbbzWEqSQQEuBN0uB3R3ZxdlGz3fFP8IbJa6hsK9vmqX44-DypMc-d24YTHDxkDUtz66lEIrej5Y5cME4uR8FpUjBlGD_gdaKMWBEFvTVHfQqHlIosygUpxya5vfvYaG6FHNOzh8tAKLn9dLLes0u6Hm99OzCy9uWHxV_9qkAdAFySYWtS7da_6Pqi0UUTDa6zGr2qFhPAAQA-wVPZuCk</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Wallach, Daniel</creator><creator>Mearns, Linda O.</creator><creator>Ruane, Alexander C.</creator><creator>Roetter, Reimund P.</creator><creator>Asseng, Senthold</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CYE</scope><scope>CYI</scope><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid></search><sort><creationdate>20161201</creationdate><title>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</title><author>Wallach, Daniel ; Mearns, Linda O. ; Ruane, Alexander C. ; Roetter, Reimund P. ; Asseng, Senthold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural production</topic><topic>Agricultural sciences</topic><topic>Atmospheric Sciences</topic><topic>Biodiversity and Ecology</topic><topic>Climate change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate models</topic><topic>Collaboration</topic><topic>Criteria</topic><topic>crop models</topic><topic>Crops</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Meteorology And Climatology</topic><topic>Modelling</topic><topic>prediction</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallach, Daniel</creatorcontrib><creatorcontrib>Mearns, Linda O.</creatorcontrib><creatorcontrib>Ruane, Alexander C.</creatorcontrib><creatorcontrib>Roetter, Reimund P.</creatorcontrib><creatorcontrib>Asseng, Senthold</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallach, Daniel</au><au>Mearns, Linda O.</au><au>Ruane, Alexander C.</au><au>Roetter, Reimund P.</au><au>Asseng, Senthold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><addtitle>Clim Change</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>139</volume><issue>3-4</issue><spage>551</spage><epage>564</epage><pages>551-564</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><coden>CLCHDX</coden><abstract>Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.</abstract><cop>Goddard Space Flight Center</cop><pub>Springer Netherlands</pub><pmid>32355375</pmid><doi>10.1007/s10584-016-1803-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0009
ispartof Climatic change, 2016-12, Vol.139 (3-4), p.551-564
issn 0165-0009
1573-1480
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175712
source ABI/INFORM Collection; Springer Nature
subjects Agricultural production
Agricultural sciences
Atmospheric Sciences
Biodiversity and Ecology
Climate change
Climate Change/Climate Change Impacts
Climate models
Collaboration
Criteria
crop models
Crops
Earth and Environmental Science
Earth Sciences
Environmental Sciences
Life Sciences
Mathematical models
Meteorology And Climatology
Modelling
prediction
Sampling
Statistical analysis
Statistical models
Uncertainty
title Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20from%20Climate%20Modeling%20on%20the%20Design%20and%20Use%20of%20Ensembles%20for%20Crop%20Modeling&rft.jtitle=Climatic%20change&rft.au=Wallach,%20Daniel&rft.date=2016-12-01&rft.volume=139&rft.issue=3-4&rft.spage=551&rft.epage=564&rft.pages=551-564&rft.issn=0165-0009&rft.eissn=1573-1480&rft.coden=CLCHDX&rft_id=info:doi/10.1007/s10584-016-1803-1&rft_dat=%3Cproquest_pubme%3E2000453402%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624t-e9d74fd1f71b1f098d182b1d3975bfc5dbcd5287ae2a54d7f7905adf3c8cdbaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1842419912&rft_id=info:pmid/32355375&rfr_iscdi=true