Loading…

Mixed-conducting particulate composites for soft electronics

Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducti...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767
Main Authors: Jastrzebska-Perfect, Patricia, Spyropoulos, George D., Cea, Claudia, Zhao, Zifang, Rauhala, Onni J., Viswanathan, Ashwin, Sheth, Sameer A., Gelinas, Jennifer N., Khodagholy, Dion
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123
cites cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123
container_end_page eaaz6767
container_issue 17
container_start_page eaaz6767
container_title Science advances
container_volume 6
creator Jastrzebska-Perfect, Patricia
Spyropoulos, George D.
Cea, Claudia
Zhao, Zifang
Rauhala, Onni J.
Viswanathan, Ashwin
Sheth, Sameer A.
Gelinas, Jennifer N.
Khodagholy, Dion
description Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.
doi_str_mv 10.1126/sciadv.aaz6767
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409650603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</originalsourceid><addsrcrecordid>eNpVkMFLwzAUxoMobsxdPffopTNJm2QFEWQ4FSZe9BzeXpMZaZuapEP9651siJ7eB-_j98GPkHNGZ4xxeRnRQb2dAXxJJdURGfNCiZyLcn78J4_INMY3SikrpRSsOiWjgpdVKUs5JleP7sPUOfquHjC5bpP1EJLDoYFkMvRt76NLJmbWhyx6mzLTGEzBdw7jGTmx0EQzPdwJeVnePi_u89XT3cPiZpVjIVXKUQITVKBCO1cgBHBheWUl5QWYtah4rSgXktWIlgKjBqm03ApkShrBeDEh13tuP6xbU6PpUoBG98G1ED61B6f_fzr3qjd-qxWb85KxHeDiAAj-fTAx6dZFNE0DnfFD1LyklRRU0mJXne2rGHyMwdjfGUb1j3W9t64P1otv4Nl3iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409650603</pqid></control><display><type>article</type><title>Mixed-conducting particulate composites for soft electronics</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</creator><creatorcontrib>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</creatorcontrib><description>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz6767</identifier><identifier>PMID: 32494646</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Materials Science ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</citedby><cites>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</cites><orcidid>0000-0001-8770-8965 ; 0000-0003-2664-7606 ; 0000-0001-6648-5758 ; 0000-0003-0805-4612 ; 0000-0002-1164-638X ; 0000-0002-9602-8563 ; 0000-0001-8964-5398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182411/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182411/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Jastrzebska-Perfect, Patricia</creatorcontrib><creatorcontrib>Spyropoulos, George D.</creatorcontrib><creatorcontrib>Cea, Claudia</creatorcontrib><creatorcontrib>Zhao, Zifang</creatorcontrib><creatorcontrib>Rauhala, Onni J.</creatorcontrib><creatorcontrib>Viswanathan, Ashwin</creatorcontrib><creatorcontrib>Sheth, Sameer A.</creatorcontrib><creatorcontrib>Gelinas, Jennifer N.</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><title>Mixed-conducting particulate composites for soft electronics</title><title>Science advances</title><description>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</description><subject>Materials Science</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMFLwzAUxoMobsxdPffopTNJm2QFEWQ4FSZe9BzeXpMZaZuapEP9651siJ7eB-_j98GPkHNGZ4xxeRnRQb2dAXxJJdURGfNCiZyLcn78J4_INMY3SikrpRSsOiWjgpdVKUs5JleP7sPUOfquHjC5bpP1EJLDoYFkMvRt76NLJmbWhyx6mzLTGEzBdw7jGTmx0EQzPdwJeVnePi_u89XT3cPiZpVjIVXKUQITVKBCO1cgBHBheWUl5QWYtah4rSgXktWIlgKjBqm03ApkShrBeDEh13tuP6xbU6PpUoBG98G1ED61B6f_fzr3qjd-qxWb85KxHeDiAAj-fTAx6dZFNE0DnfFD1LyklRRU0mJXne2rGHyMwdjfGUb1j3W9t64P1otv4Nl3iQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jastrzebska-Perfect, Patricia</creator><creator>Spyropoulos, George D.</creator><creator>Cea, Claudia</creator><creator>Zhao, Zifang</creator><creator>Rauhala, Onni J.</creator><creator>Viswanathan, Ashwin</creator><creator>Sheth, Sameer A.</creator><creator>Gelinas, Jennifer N.</creator><creator>Khodagholy, Dion</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8770-8965</orcidid><orcidid>https://orcid.org/0000-0003-2664-7606</orcidid><orcidid>https://orcid.org/0000-0001-6648-5758</orcidid><orcidid>https://orcid.org/0000-0003-0805-4612</orcidid><orcidid>https://orcid.org/0000-0002-1164-638X</orcidid><orcidid>https://orcid.org/0000-0002-9602-8563</orcidid><orcidid>https://orcid.org/0000-0001-8964-5398</orcidid></search><sort><creationdate>20200401</creationdate><title>Mixed-conducting particulate composites for soft electronics</title><author>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jastrzebska-Perfect, Patricia</creatorcontrib><creatorcontrib>Spyropoulos, George D.</creatorcontrib><creatorcontrib>Cea, Claudia</creatorcontrib><creatorcontrib>Zhao, Zifang</creatorcontrib><creatorcontrib>Rauhala, Onni J.</creatorcontrib><creatorcontrib>Viswanathan, Ashwin</creatorcontrib><creatorcontrib>Sheth, Sameer A.</creatorcontrib><creatorcontrib>Gelinas, Jennifer N.</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jastrzebska-Perfect, Patricia</au><au>Spyropoulos, George D.</au><au>Cea, Claudia</au><au>Zhao, Zifang</au><au>Rauhala, Onni J.</au><au>Viswanathan, Ashwin</au><au>Sheth, Sameer A.</au><au>Gelinas, Jennifer N.</au><au>Khodagholy, Dion</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-conducting particulate composites for soft electronics</atitle><jtitle>Science advances</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>6</volume><issue>17</issue><spage>eaaz6767</spage><epage>eaaz6767</epage><pages>eaaz6767-eaaz6767</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</abstract><pub>American Association for the Advancement of Science</pub><pmid>32494646</pmid><doi>10.1126/sciadv.aaz6767</doi><orcidid>https://orcid.org/0000-0001-8770-8965</orcidid><orcidid>https://orcid.org/0000-0003-2664-7606</orcidid><orcidid>https://orcid.org/0000-0001-6648-5758</orcidid><orcidid>https://orcid.org/0000-0003-0805-4612</orcidid><orcidid>https://orcid.org/0000-0002-1164-638X</orcidid><orcidid>https://orcid.org/0000-0002-9602-8563</orcidid><orcidid>https://orcid.org/0000-0001-8964-5398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182411
source American Association for the Advancement of Science; PubMed Central
subjects Materials Science
Neuroscience
SciAdv r-articles
title Mixed-conducting particulate composites for soft electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-conducting%20particulate%20composites%20for%20soft%20electronics&rft.jtitle=Science%20advances&rft.au=Jastrzebska-Perfect,%20Patricia&rft.date=2020-04-01&rft.volume=6&rft.issue=17&rft.spage=eaaz6767&rft.epage=eaaz6767&rft.pages=eaaz6767-eaaz6767&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz6767&rft_dat=%3Cproquest_pubme%3E2409650603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409650603&rft_id=info:pmid/32494646&rfr_iscdi=true