Loading…
Mixed-conducting particulate composites for soft electronics
Mixed-conducting particulate composite can form functional electronic components by varying particle size and density. Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducti...
Saved in:
Published in: | Science advances 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123 |
container_end_page | eaaz6767 |
container_issue | 17 |
container_start_page | eaaz6767 |
container_title | Science advances |
container_volume | 6 |
creator | Jastrzebska-Perfect, Patricia Spyropoulos, George D. Cea, Claudia Zhao, Zifang Rauhala, Onni J. Viswanathan, Ashwin Sheth, Sameer A. Gelinas, Jennifer N. Khodagholy, Dion |
description | Mixed-conducting particulate composite can form functional electronic components by varying particle size and density.
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals. |
doi_str_mv | 10.1126/sciadv.aaz6767 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409650603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</originalsourceid><addsrcrecordid>eNpVkMFLwzAUxoMobsxdPffopTNJm2QFEWQ4FSZe9BzeXpMZaZuapEP9651siJ7eB-_j98GPkHNGZ4xxeRnRQb2dAXxJJdURGfNCiZyLcn78J4_INMY3SikrpRSsOiWjgpdVKUs5JleP7sPUOfquHjC5bpP1EJLDoYFkMvRt76NLJmbWhyx6mzLTGEzBdw7jGTmx0EQzPdwJeVnePi_u89XT3cPiZpVjIVXKUQITVKBCO1cgBHBheWUl5QWYtah4rSgXktWIlgKjBqm03ApkShrBeDEh13tuP6xbU6PpUoBG98G1ED61B6f_fzr3qjd-qxWb85KxHeDiAAj-fTAx6dZFNE0DnfFD1LyklRRU0mJXne2rGHyMwdjfGUb1j3W9t64P1otv4Nl3iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409650603</pqid></control><display><type>article</type><title>Mixed-conducting particulate composites for soft electronics</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</creator><creatorcontrib>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</creatorcontrib><description>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density.
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz6767</identifier><identifier>PMID: 32494646</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Materials Science ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</citedby><cites>FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</cites><orcidid>0000-0001-8770-8965 ; 0000-0003-2664-7606 ; 0000-0001-6648-5758 ; 0000-0003-0805-4612 ; 0000-0002-1164-638X ; 0000-0002-9602-8563 ; 0000-0001-8964-5398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182411/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182411/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Jastrzebska-Perfect, Patricia</creatorcontrib><creatorcontrib>Spyropoulos, George D.</creatorcontrib><creatorcontrib>Cea, Claudia</creatorcontrib><creatorcontrib>Zhao, Zifang</creatorcontrib><creatorcontrib>Rauhala, Onni J.</creatorcontrib><creatorcontrib>Viswanathan, Ashwin</creatorcontrib><creatorcontrib>Sheth, Sameer A.</creatorcontrib><creatorcontrib>Gelinas, Jennifer N.</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><title>Mixed-conducting particulate composites for soft electronics</title><title>Science advances</title><description>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density.
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</description><subject>Materials Science</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMFLwzAUxoMobsxdPffopTNJm2QFEWQ4FSZe9BzeXpMZaZuapEP9651siJ7eB-_j98GPkHNGZ4xxeRnRQb2dAXxJJdURGfNCiZyLcn78J4_INMY3SikrpRSsOiWjgpdVKUs5JleP7sPUOfquHjC5bpP1EJLDoYFkMvRt76NLJmbWhyx6mzLTGEzBdw7jGTmx0EQzPdwJeVnePi_u89XT3cPiZpVjIVXKUQITVKBCO1cgBHBheWUl5QWYtah4rSgXktWIlgKjBqm03ApkShrBeDEh13tuP6xbU6PpUoBG98G1ED61B6f_fzr3qjd-qxWb85KxHeDiAAj-fTAx6dZFNE0DnfFD1LyklRRU0mJXne2rGHyMwdjfGUb1j3W9t64P1otv4Nl3iQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jastrzebska-Perfect, Patricia</creator><creator>Spyropoulos, George D.</creator><creator>Cea, Claudia</creator><creator>Zhao, Zifang</creator><creator>Rauhala, Onni J.</creator><creator>Viswanathan, Ashwin</creator><creator>Sheth, Sameer A.</creator><creator>Gelinas, Jennifer N.</creator><creator>Khodagholy, Dion</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8770-8965</orcidid><orcidid>https://orcid.org/0000-0003-2664-7606</orcidid><orcidid>https://orcid.org/0000-0001-6648-5758</orcidid><orcidid>https://orcid.org/0000-0003-0805-4612</orcidid><orcidid>https://orcid.org/0000-0002-1164-638X</orcidid><orcidid>https://orcid.org/0000-0002-9602-8563</orcidid><orcidid>https://orcid.org/0000-0001-8964-5398</orcidid></search><sort><creationdate>20200401</creationdate><title>Mixed-conducting particulate composites for soft electronics</title><author>Jastrzebska-Perfect, Patricia ; Spyropoulos, George D. ; Cea, Claudia ; Zhao, Zifang ; Rauhala, Onni J. ; Viswanathan, Ashwin ; Sheth, Sameer A. ; Gelinas, Jennifer N. ; Khodagholy, Dion</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jastrzebska-Perfect, Patricia</creatorcontrib><creatorcontrib>Spyropoulos, George D.</creatorcontrib><creatorcontrib>Cea, Claudia</creatorcontrib><creatorcontrib>Zhao, Zifang</creatorcontrib><creatorcontrib>Rauhala, Onni J.</creatorcontrib><creatorcontrib>Viswanathan, Ashwin</creatorcontrib><creatorcontrib>Sheth, Sameer A.</creatorcontrib><creatorcontrib>Gelinas, Jennifer N.</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jastrzebska-Perfect, Patricia</au><au>Spyropoulos, George D.</au><au>Cea, Claudia</au><au>Zhao, Zifang</au><au>Rauhala, Onni J.</au><au>Viswanathan, Ashwin</au><au>Sheth, Sameer A.</au><au>Gelinas, Jennifer N.</au><au>Khodagholy, Dion</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-conducting particulate composites for soft electronics</atitle><jtitle>Science advances</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>6</volume><issue>17</issue><spage>eaaz6767</spage><epage>eaaz6767</epage><pages>eaaz6767-eaaz6767</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mixed-conducting particulate composite can form functional electronic components by varying particle size and density.
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.</abstract><pub>American Association for the Advancement of Science</pub><pmid>32494646</pmid><doi>10.1126/sciadv.aaz6767</doi><orcidid>https://orcid.org/0000-0001-8770-8965</orcidid><orcidid>https://orcid.org/0000-0003-2664-7606</orcidid><orcidid>https://orcid.org/0000-0001-6648-5758</orcidid><orcidid>https://orcid.org/0000-0003-0805-4612</orcidid><orcidid>https://orcid.org/0000-0002-1164-638X</orcidid><orcidid>https://orcid.org/0000-0002-9602-8563</orcidid><orcidid>https://orcid.org/0000-0001-8964-5398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-04, Vol.6 (17), p.eaaz6767-eaaz6767 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182411 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Materials Science Neuroscience SciAdv r-articles |
title | Mixed-conducting particulate composites for soft electronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-conducting%20particulate%20composites%20for%20soft%20electronics&rft.jtitle=Science%20advances&rft.au=Jastrzebska-Perfect,%20Patricia&rft.date=2020-04-01&rft.volume=6&rft.issue=17&rft.spage=eaaz6767&rft.epage=eaaz6767&rft.pages=eaaz6767-eaaz6767&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz6767&rft_dat=%3Cproquest_pubme%3E2409650603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-c6a1505c7cf87a55a25f29f6023aeb592d702561dccf0a10ec06f2f5c176e5123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409650603&rft_id=info:pmid/32494646&rfr_iscdi=true |