Loading…

Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation

Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unli...

Full description

Saved in:
Bibliographic Details
Published in:Chembiochem : a European journal of chemical biology 2020-04, Vol.21 (7), p.985-990
Main Authors: Leferink, Nicole G. H., Ranaghan, Kara E., Battye, Jaime, Johannissen, Linus O., Hay, Sam, Kamp, Marc W., Mulholland, Adrian J., Scrutton, Nigel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13
cites cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13
container_end_page 990
container_issue 7
container_start_page 985
container_title Chembiochem : a European journal of chemical biology
container_volume 21
creator Leferink, Nicole G. H.
Ranaghan, Kara E.
Battye, Jaime
Johannissen, Linus O.
Hay, Sam
Kamp, Marc W.
Mulholland, Adrian J.
Scrutton, Nigel S.
description Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product. Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.
doi_str_mv 10.1002/cbic.201900672
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311924779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</originalsourceid><addsrcrecordid>eNqFkUuLFDEURoMozji6dSkFbtx0m1flsRG00ZmBEUXbnRBSqVvdGaqTNkmN1r-3im7bx8ZVLuTcw3f5EHpK8JJgTF-6xrslxURjLCS9h84JZ3ohBWP3jzOnVJ6hRznfYoy1YOQhOmNEKIrr-hx9XdudD5uqbKH6BNYVf-fLWMWueh9DLJD2EKD6PIaytRlytY7V5eDbGd74mKGHeQWqjym2gyvV1dim-GPsbfExPEYPOttneHJ8L9CXd2_Xq6vFzYfL69Xrm4WrcU0XjoFrhZ3SctHqRmhS15a4hjriOjsjRFHgyingpKVME1ANpZZSwZnsCLtArw7e_dDsoHUQSrK92Se_s2k00Xrz90_wW7OJd0YSJQmXk-DFUZDitwFyMTufHfS9DRCHbCgjRFMupZ7Q5_-gt3FIYTpvohQXqpZqTrQ8UC7FnBN0pzAEm7k4MxdnTsVNC8_-POGE_2pqAvQB-O57GP-jM6s316vf8p8byaXP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384685781</pqid></control><display><type>article</type><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><source>Wiley</source><creator>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</creator><creatorcontrib>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</creatorcontrib><description>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product. Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900672</identifier><identifier>PMID: 31682055</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding Sites ; Catalytic Domain ; Cineole ; Cyclization ; Cyclohexane Monoterpenes - chemistry ; Cyclohexane Monoterpenes - metabolism ; enzyme catalysis ; Eucalyptol - chemistry ; Eucalyptol - metabolism ; Flavors ; Fragrances ; Hydroxylation ; Industrial plants ; Intramolecular Lyases - genetics ; Intramolecular Lyases - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; Monoterpenes - chemistry ; Monoterpenes - metabolism ; Monoterpenoids ; Mutagenesis, Site-Directed ; Mutation ; Natural products ; Pharmaceutical industry ; protein engineering ; Quantum mechanics ; Stereoisomerism ; Streptomyces - enzymology ; synthetic biology ; terpenoids ; Terpineol ; Water - chemistry ; Water - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-04, Vol.21 (7), p.985-990</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</citedby><cites>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</cites><orcidid>0000-0002-4182-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31682055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leferink, Nicole G. H.</creatorcontrib><creatorcontrib>Ranaghan, Kara E.</creatorcontrib><creatorcontrib>Battye, Jaime</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Kamp, Marc W.</creatorcontrib><creatorcontrib>Mulholland, Adrian J.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product. Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</description><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Cineole</subject><subject>Cyclization</subject><subject>Cyclohexane Monoterpenes - chemistry</subject><subject>Cyclohexane Monoterpenes - metabolism</subject><subject>enzyme catalysis</subject><subject>Eucalyptol - chemistry</subject><subject>Eucalyptol - metabolism</subject><subject>Flavors</subject><subject>Fragrances</subject><subject>Hydroxylation</subject><subject>Industrial plants</subject><subject>Intramolecular Lyases - genetics</subject><subject>Intramolecular Lyases - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monoterpenes - chemistry</subject><subject>Monoterpenes - metabolism</subject><subject>Monoterpenoids</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Pharmaceutical industry</subject><subject>protein engineering</subject><subject>Quantum mechanics</subject><subject>Stereoisomerism</subject><subject>Streptomyces - enzymology</subject><subject>synthetic biology</subject><subject>terpenoids</subject><subject>Terpineol</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUuLFDEURoMozji6dSkFbtx0m1flsRG00ZmBEUXbnRBSqVvdGaqTNkmN1r-3im7bx8ZVLuTcw3f5EHpK8JJgTF-6xrslxURjLCS9h84JZ3ohBWP3jzOnVJ6hRznfYoy1YOQhOmNEKIrr-hx9XdudD5uqbKH6BNYVf-fLWMWueh9DLJD2EKD6PIaytRlytY7V5eDbGd74mKGHeQWqjym2gyvV1dim-GPsbfExPEYPOttneHJ8L9CXd2_Xq6vFzYfL69Xrm4WrcU0XjoFrhZ3SctHqRmhS15a4hjriOjsjRFHgyingpKVME1ANpZZSwZnsCLtArw7e_dDsoHUQSrK92Se_s2k00Xrz90_wW7OJd0YSJQmXk-DFUZDitwFyMTufHfS9DRCHbCgjRFMupZ7Q5_-gt3FIYTpvohQXqpZqTrQ8UC7FnBN0pzAEm7k4MxdnTsVNC8_-POGE_2pqAvQB-O57GP-jM6s316vf8p8byaXP</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Leferink, Nicole G. H.</creator><creator>Ranaghan, Kara E.</creator><creator>Battye, Jaime</creator><creator>Johannissen, Linus O.</creator><creator>Hay, Sam</creator><creator>Kamp, Marc W.</creator><creator>Mulholland, Adrian J.</creator><creator>Scrutton, Nigel S.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid></search><sort><creationdate>20200401</creationdate><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><author>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Cineole</topic><topic>Cyclization</topic><topic>Cyclohexane Monoterpenes - chemistry</topic><topic>Cyclohexane Monoterpenes - metabolism</topic><topic>enzyme catalysis</topic><topic>Eucalyptol - chemistry</topic><topic>Eucalyptol - metabolism</topic><topic>Flavors</topic><topic>Fragrances</topic><topic>Hydroxylation</topic><topic>Industrial plants</topic><topic>Intramolecular Lyases - genetics</topic><topic>Intramolecular Lyases - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monoterpenes - chemistry</topic><topic>Monoterpenes - metabolism</topic><topic>Monoterpenoids</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Pharmaceutical industry</topic><topic>protein engineering</topic><topic>Quantum mechanics</topic><topic>Stereoisomerism</topic><topic>Streptomyces - enzymology</topic><topic>synthetic biology</topic><topic>terpenoids</topic><topic>Terpineol</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leferink, Nicole G. H.</creatorcontrib><creatorcontrib>Ranaghan, Kara E.</creatorcontrib><creatorcontrib>Battye, Jaime</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Kamp, Marc W.</creatorcontrib><creatorcontrib>Mulholland, Adrian J.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leferink, Nicole G. H.</au><au>Ranaghan, Kara E.</au><au>Battye, Jaime</au><au>Johannissen, Linus O.</au><au>Hay, Sam</au><au>Kamp, Marc W.</au><au>Mulholland, Adrian J.</au><au>Scrutton, Nigel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>21</volume><issue>7</issue><spage>985</spage><epage>990</epage><pages>985-990</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product. Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31682055</pmid><doi>10.1002/cbic.201900672</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2020-04, Vol.21 (7), p.985-990
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187147
source Wiley
subjects Binding Sites
Catalytic Domain
Cineole
Cyclization
Cyclohexane Monoterpenes - chemistry
Cyclohexane Monoterpenes - metabolism
enzyme catalysis
Eucalyptol - chemistry
Eucalyptol - metabolism
Flavors
Fragrances
Hydroxylation
Industrial plants
Intramolecular Lyases - genetics
Intramolecular Lyases - metabolism
Molecular dynamics
Molecular Dynamics Simulation
Monoterpenes - chemistry
Monoterpenes - metabolism
Monoterpenoids
Mutagenesis, Site-Directed
Mutation
Natural products
Pharmaceutical industry
protein engineering
Quantum mechanics
Stereoisomerism
Streptomyces - enzymology
synthetic biology
terpenoids
Terpineol
Water - chemistry
Water - metabolism
title Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20the%20Reactivity%20of%20Monoterpene%20Synthases%20To%20Guide%20Regioselective%20Product%20Hydroxylation&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Leferink,%20Nicole%20G.%20H.&rft.date=2020-04-01&rft.volume=21&rft.issue=7&rft.spage=985&rft.epage=990&rft.pages=985-990&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900672&rft_dat=%3Cproquest_pubme%3E2311924779%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384685781&rft_id=info:pmid/31682055&rfr_iscdi=true