Loading…
Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation
Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unli...
Saved in:
Published in: | Chembiochem : a European journal of chemical biology 2020-04, Vol.21 (7), p.985-990 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13 |
container_end_page | 990 |
container_issue | 7 |
container_start_page | 985 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 21 |
creator | Leferink, Nicole G. H. Ranaghan, Kara E. Battye, Jaime Johannissen, Linus O. Hay, Sam Kamp, Marc W. Mulholland, Adrian J. Scrutton, Nigel S. |
description | Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product.
Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate. |
doi_str_mv | 10.1002/cbic.201900672 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311924779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</originalsourceid><addsrcrecordid>eNqFkUuLFDEURoMozji6dSkFbtx0m1flsRG00ZmBEUXbnRBSqVvdGaqTNkmN1r-3im7bx8ZVLuTcw3f5EHpK8JJgTF-6xrslxURjLCS9h84JZ3ohBWP3jzOnVJ6hRznfYoy1YOQhOmNEKIrr-hx9XdudD5uqbKH6BNYVf-fLWMWueh9DLJD2EKD6PIaytRlytY7V5eDbGd74mKGHeQWqjym2gyvV1dim-GPsbfExPEYPOttneHJ8L9CXd2_Xq6vFzYfL69Xrm4WrcU0XjoFrhZ3SctHqRmhS15a4hjriOjsjRFHgyingpKVME1ANpZZSwZnsCLtArw7e_dDsoHUQSrK92Se_s2k00Xrz90_wW7OJd0YSJQmXk-DFUZDitwFyMTufHfS9DRCHbCgjRFMupZ7Q5_-gt3FIYTpvohQXqpZqTrQ8UC7FnBN0pzAEm7k4MxdnTsVNC8_-POGE_2pqAvQB-O57GP-jM6s316vf8p8byaXP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384685781</pqid></control><display><type>article</type><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><source>Wiley</source><creator>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</creator><creatorcontrib>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</creatorcontrib><description>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product.
Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900672</identifier><identifier>PMID: 31682055</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding Sites ; Catalytic Domain ; Cineole ; Cyclization ; Cyclohexane Monoterpenes - chemistry ; Cyclohexane Monoterpenes - metabolism ; enzyme catalysis ; Eucalyptol - chemistry ; Eucalyptol - metabolism ; Flavors ; Fragrances ; Hydroxylation ; Industrial plants ; Intramolecular Lyases - genetics ; Intramolecular Lyases - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; Monoterpenes - chemistry ; Monoterpenes - metabolism ; Monoterpenoids ; Mutagenesis, Site-Directed ; Mutation ; Natural products ; Pharmaceutical industry ; protein engineering ; Quantum mechanics ; Stereoisomerism ; Streptomyces - enzymology ; synthetic biology ; terpenoids ; Terpineol ; Water - chemistry ; Water - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-04, Vol.21 (7), p.985-990</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</citedby><cites>FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</cites><orcidid>0000-0002-4182-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31682055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leferink, Nicole G. H.</creatorcontrib><creatorcontrib>Ranaghan, Kara E.</creatorcontrib><creatorcontrib>Battye, Jaime</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Kamp, Marc W.</creatorcontrib><creatorcontrib>Mulholland, Adrian J.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product.
Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</description><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Cineole</subject><subject>Cyclization</subject><subject>Cyclohexane Monoterpenes - chemistry</subject><subject>Cyclohexane Monoterpenes - metabolism</subject><subject>enzyme catalysis</subject><subject>Eucalyptol - chemistry</subject><subject>Eucalyptol - metabolism</subject><subject>Flavors</subject><subject>Fragrances</subject><subject>Hydroxylation</subject><subject>Industrial plants</subject><subject>Intramolecular Lyases - genetics</subject><subject>Intramolecular Lyases - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monoterpenes - chemistry</subject><subject>Monoterpenes - metabolism</subject><subject>Monoterpenoids</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Pharmaceutical industry</subject><subject>protein engineering</subject><subject>Quantum mechanics</subject><subject>Stereoisomerism</subject><subject>Streptomyces - enzymology</subject><subject>synthetic biology</subject><subject>terpenoids</subject><subject>Terpineol</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUuLFDEURoMozji6dSkFbtx0m1flsRG00ZmBEUXbnRBSqVvdGaqTNkmN1r-3im7bx8ZVLuTcw3f5EHpK8JJgTF-6xrslxURjLCS9h84JZ3ohBWP3jzOnVJ6hRznfYoy1YOQhOmNEKIrr-hx9XdudD5uqbKH6BNYVf-fLWMWueh9DLJD2EKD6PIaytRlytY7V5eDbGd74mKGHeQWqjym2gyvV1dim-GPsbfExPEYPOttneHJ8L9CXd2_Xq6vFzYfL69Xrm4WrcU0XjoFrhZ3SctHqRmhS15a4hjriOjsjRFHgyingpKVME1ANpZZSwZnsCLtArw7e_dDsoHUQSrK92Se_s2k00Xrz90_wW7OJd0YSJQmXk-DFUZDitwFyMTufHfS9DRCHbCgjRFMupZ7Q5_-gt3FIYTpvohQXqpZqTrQ8UC7FnBN0pzAEm7k4MxdnTsVNC8_-POGE_2pqAvQB-O57GP-jM6s316vf8p8byaXP</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Leferink, Nicole G. H.</creator><creator>Ranaghan, Kara E.</creator><creator>Battye, Jaime</creator><creator>Johannissen, Linus O.</creator><creator>Hay, Sam</creator><creator>Kamp, Marc W.</creator><creator>Mulholland, Adrian J.</creator><creator>Scrutton, Nigel S.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid></search><sort><creationdate>20200401</creationdate><title>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</title><author>Leferink, Nicole G. H. ; Ranaghan, Kara E. ; Battye, Jaime ; Johannissen, Linus O. ; Hay, Sam ; Kamp, Marc W. ; Mulholland, Adrian J. ; Scrutton, Nigel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Cineole</topic><topic>Cyclization</topic><topic>Cyclohexane Monoterpenes - chemistry</topic><topic>Cyclohexane Monoterpenes - metabolism</topic><topic>enzyme catalysis</topic><topic>Eucalyptol - chemistry</topic><topic>Eucalyptol - metabolism</topic><topic>Flavors</topic><topic>Fragrances</topic><topic>Hydroxylation</topic><topic>Industrial plants</topic><topic>Intramolecular Lyases - genetics</topic><topic>Intramolecular Lyases - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monoterpenes - chemistry</topic><topic>Monoterpenes - metabolism</topic><topic>Monoterpenoids</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Pharmaceutical industry</topic><topic>protein engineering</topic><topic>Quantum mechanics</topic><topic>Stereoisomerism</topic><topic>Streptomyces - enzymology</topic><topic>synthetic biology</topic><topic>terpenoids</topic><topic>Terpineol</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leferink, Nicole G. H.</creatorcontrib><creatorcontrib>Ranaghan, Kara E.</creatorcontrib><creatorcontrib>Battye, Jaime</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Kamp, Marc W.</creatorcontrib><creatorcontrib>Mulholland, Adrian J.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leferink, Nicole G. H.</au><au>Ranaghan, Kara E.</au><au>Battye, Jaime</au><au>Johannissen, Linus O.</au><au>Hay, Sam</au><au>Kamp, Marc W.</au><au>Mulholland, Adrian J.</au><au>Scrutton, Nigel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>21</volume><issue>7</issue><spage>985</spage><epage>990</epage><pages>985-990</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Monoterpenoids are industrially important natural products with applications in the flavours, fragrances, fuels and pharmaceutical industries. Most monoterpenoids are produced by plants, but recently two bacterial monoterpene synthases have been identified, including a cineole synthase (bCinS). Unlike plant cineole synthases, bCinS is capable of producing nearly pure cineole from geranyl diphosphate in a complex cyclisation cascade that is tightly controlled. Here we have used a multidisciplinary approach to show that Asn305 controls water attack on the α‐terpinyl cation and subsequent cyclisation and deprotonation of the α‐terpineol intermediate, key steps in the cyclisation cascade which direct product formation towards cineole. Mutation of Asn305 results in variants that no longer produce α‐terpineol or cineole. Molecular dynamics simulations revealed that water coordination is disrupted in all variants tested. Quantum mechanics calculations indicate that Asn305 is most likely a (transient) proton acceptor for the final deprotonation step. Our synergistic approach gives unique insight into how a single residue, Asn305, tames the promiscuous chemistry of monoterpene synthase cyclisation cascades. It does this by tightly controlling the final steps in cineole formation catalysed by bCinS to form a single hydroxylated monoterpene product.
Promiscuous chemistry of cyclisation cascades: A synergistic experimental and computational approach revealed that Asn305 tightly controls the water attack and subsequent cyclisation step in the reaction cascade of bacterial cineole synthase, resulting in 95 % pure cineole via the (S)‐(−)‐α‐terpineol intermediate.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31682055</pmid><doi>10.1002/cbic.201900672</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2020-04, Vol.21 (7), p.985-990 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187147 |
source | Wiley |
subjects | Binding Sites Catalytic Domain Cineole Cyclization Cyclohexane Monoterpenes - chemistry Cyclohexane Monoterpenes - metabolism enzyme catalysis Eucalyptol - chemistry Eucalyptol - metabolism Flavors Fragrances Hydroxylation Industrial plants Intramolecular Lyases - genetics Intramolecular Lyases - metabolism Molecular dynamics Molecular Dynamics Simulation Monoterpenes - chemistry Monoterpenes - metabolism Monoterpenoids Mutagenesis, Site-Directed Mutation Natural products Pharmaceutical industry protein engineering Quantum mechanics Stereoisomerism Streptomyces - enzymology synthetic biology terpenoids Terpineol Water - chemistry Water - metabolism |
title | Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20the%20Reactivity%20of%20Monoterpene%20Synthases%20To%20Guide%20Regioselective%20Product%20Hydroxylation&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Leferink,%20Nicole%20G.%20H.&rft.date=2020-04-01&rft.volume=21&rft.issue=7&rft.spage=985&rft.epage=990&rft.pages=985-990&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900672&rft_dat=%3Cproquest_pubme%3E2311924779%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5052-c3ecd6a14346d9b69155a1cb2c1cfa5052182e48c8e41d2391e8b22a226437f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384685781&rft_id=info:pmid/31682055&rfr_iscdi=true |