Loading…

Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer

Pretransplant islet culture is associated with the loss of islet cell mass and insulin secretory function. Insulin secretion from islet β‐cells is primarily controlled by mitochondrial ATP generation in response to elevations in extracellular glucose. Coculture of islets with mesenchymal stromal cel...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 2020-04, Vol.38 (4), p.574-584
Main Authors: Rackham, Chloe L., Hubber, Ella L., Czajka, Anna, Malik, Afshan N., King, Aileen J. F., Jones, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3
cites cdi_FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3
container_end_page 584
container_issue 4
container_start_page 574
container_title Stem cells (Dayton, Ohio)
container_volume 38
creator Rackham, Chloe L.
Hubber, Ella L.
Czajka, Anna
Malik, Afshan N.
King, Aileen J. F.
Jones, Peter M.
description Pretransplant islet culture is associated with the loss of islet cell mass and insulin secretory function. Insulin secretion from islet β‐cells is primarily controlled by mitochondrial ATP generation in response to elevations in extracellular glucose. Coculture of islets with mesenchymal stromal cells (MSCs) improves islet insulin secretory function in vitro, which correlates with superior islet graft function in vivo. This study aimed to determine whether the improved islet function is associated with mitochondrial transfer from MSCs to cocultured islets. We have demonstrated mitochondrial transfer from human adipose MSCs to human islet β‐cells in coculture. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially, through tunneling nanotube (TNT)‐like structures. The extent of mitochondrial transfer to clinically relevant human islets was greater than that to experimental mouse islets. Human islets are subjected to more extreme cellular stressors than mouse islets, which may induce “danger signals” for MSCs, initiating the donation of MSC‐derived mitochondria to human islet β‐cells. Our observations of increased MSC‐mediated mitochondria transfer to hypoxia‐exposed mouse islets are consistent with this and suggest that MSCs are most effective in supporting the secretory function of compromised β‐cells. Ensuring optimal MSC‐derived mitochondria transfer in preculture and/or cotransplantation strategies could be used to maximize the therapeutic efficacy of MSCs, thus enabling the more widespread application of clinical islet transplantation. Human mesenchymal stromal cells (MSCs) transfer their mitochondria to cocultured human islet β‐cells. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially through tunneling nanotube‐like structures. MSC‐mediated mitochondrial donation to islet β‐cells represents a novel mechanism of enhanced islet β‐cell function.
doi_str_mv 10.1002/stem.3134
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384376984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3</originalsourceid><addsrcrecordid>eNp1kc-K1TAUh4Moznh14QtIwY0uOpPTpG2yEYZh_AMjs3BchzQ9vc3QJtckVa4rH8Fn9ElMveOggptzAvn4-B1-hDwFegKUVqcx4XzCgPF75BhqLksuQdzPb9o0ZU2lPCKPYryhFHgtxENyxEBCJXl9TNTVLtnZfrVuW3SYdGFwmophcSZZ74o0Br9sx2LGiM6M-1lPRUzBr3slf3z7PmNvdcK-mG3yZvSuD1YXKWgXBwyPyYNBTxGf3O4N-fj64vr8bXl59ebd-dllaThnvDTYtTUDoLrudCU4om57QymVOWmfJ-VQC9A9F301NJzXYPquMqZCEBQGtiGvDt7d0uVEBl1OMKldsLMOe-W1VX__ODuqrf-sWhAtE5AFL24FwX9aMCY127ieqB36JaqKMd5S2oDM6PN_0Bu_BJfPy5TgrG1knhvy8kCZ4GMMONyFAarW2tRam1pry-yzP9Pfkb97ysDpAfhiJ9z_36Q-XF-8_6X8CRCGpVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384376984</pqid></control><display><type>article</type><title>Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer</title><source>Oxford Journals Online</source><creator>Rackham, Chloe L. ; Hubber, Ella L. ; Czajka, Anna ; Malik, Afshan N. ; King, Aileen J. F. ; Jones, Peter M.</creator><creatorcontrib>Rackham, Chloe L. ; Hubber, Ella L. ; Czajka, Anna ; Malik, Afshan N. ; King, Aileen J. F. ; Jones, Peter M.</creatorcontrib><description>Pretransplant islet culture is associated with the loss of islet cell mass and insulin secretory function. Insulin secretion from islet β‐cells is primarily controlled by mitochondrial ATP generation in response to elevations in extracellular glucose. Coculture of islets with mesenchymal stromal cells (MSCs) improves islet insulin secretory function in vitro, which correlates with superior islet graft function in vivo. This study aimed to determine whether the improved islet function is associated with mitochondrial transfer from MSCs to cocultured islets. We have demonstrated mitochondrial transfer from human adipose MSCs to human islet β‐cells in coculture. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially, through tunneling nanotube (TNT)‐like structures. The extent of mitochondrial transfer to clinically relevant human islets was greater than that to experimental mouse islets. Human islets are subjected to more extreme cellular stressors than mouse islets, which may induce “danger signals” for MSCs, initiating the donation of MSC‐derived mitochondria to human islet β‐cells. Our observations of increased MSC‐mediated mitochondria transfer to hypoxia‐exposed mouse islets are consistent with this and suggest that MSCs are most effective in supporting the secretory function of compromised β‐cells. Ensuring optimal MSC‐derived mitochondria transfer in preculture and/or cotransplantation strategies could be used to maximize the therapeutic efficacy of MSCs, thus enabling the more widespread application of clinical islet transplantation. Human mesenchymal stromal cells (MSCs) transfer their mitochondria to cocultured human islet β‐cells. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially through tunneling nanotube‐like structures. MSC‐mediated mitochondrial donation to islet β‐cells represents a novel mechanism of enhanced islet β‐cell function.</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.3134</identifier><identifier>PMID: 31912945</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Beta cells ; Cell culture ; Cells, Cultured ; diabetes ; Diabetes Mellitus, Experimental - therapy ; Fluorescence ; Glucose ; Humans ; Hypoxia ; In vivo methods and tests ; Insulin ; Insulin secretion ; Insulin-Secreting Cells - metabolism ; Islet cells ; islet transplantation ; Islets of Langerhans Transplantation - methods ; Mesenchymal stem cells ; Mesenchymal Stem Cells - metabolism ; mesenchymal stromal cells ; Mesenchyme ; Mice ; Mitochondria ; Mitochondria - metabolism ; mitochondrial transfer ; Optimization ; Pancreatic islet transplantation ; Stromal cells ; Tissue‐specific Stem Cells ; Transplantation</subject><ispartof>Stem cells (Dayton, Ohio), 2020-04, Vol.38 (4), p.574-584</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2020</rights><rights>2020 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2020.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3</citedby><cites>FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3</cites><orcidid>0000-0001-5759-7985 ; 0000-0003-1201-2335 ; 0000-0003-4314-6109 ; 0000-0003-1864-9302 ; 0000-0001-7207-1666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rackham, Chloe L.</creatorcontrib><creatorcontrib>Hubber, Ella L.</creatorcontrib><creatorcontrib>Czajka, Anna</creatorcontrib><creatorcontrib>Malik, Afshan N.</creatorcontrib><creatorcontrib>King, Aileen J. F.</creatorcontrib><creatorcontrib>Jones, Peter M.</creatorcontrib><title>Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Pretransplant islet culture is associated with the loss of islet cell mass and insulin secretory function. Insulin secretion from islet β‐cells is primarily controlled by mitochondrial ATP generation in response to elevations in extracellular glucose. Coculture of islets with mesenchymal stromal cells (MSCs) improves islet insulin secretory function in vitro, which correlates with superior islet graft function in vivo. This study aimed to determine whether the improved islet function is associated with mitochondrial transfer from MSCs to cocultured islets. We have demonstrated mitochondrial transfer from human adipose MSCs to human islet β‐cells in coculture. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially, through tunneling nanotube (TNT)‐like structures. The extent of mitochondrial transfer to clinically relevant human islets was greater than that to experimental mouse islets. Human islets are subjected to more extreme cellular stressors than mouse islets, which may induce “danger signals” for MSCs, initiating the donation of MSC‐derived mitochondria to human islet β‐cells. Our observations of increased MSC‐mediated mitochondria transfer to hypoxia‐exposed mouse islets are consistent with this and suggest that MSCs are most effective in supporting the secretory function of compromised β‐cells. Ensuring optimal MSC‐derived mitochondria transfer in preculture and/or cotransplantation strategies could be used to maximize the therapeutic efficacy of MSCs, thus enabling the more widespread application of clinical islet transplantation. Human mesenchymal stromal cells (MSCs) transfer their mitochondria to cocultured human islet β‐cells. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially through tunneling nanotube‐like structures. MSC‐mediated mitochondrial donation to islet β‐cells represents a novel mechanism of enhanced islet β‐cell function.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>Fluorescence</subject><subject>Glucose</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>In vivo methods and tests</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Islet cells</subject><subject>islet transplantation</subject><subject>Islets of Langerhans Transplantation - methods</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>mesenchymal stromal cells</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial transfer</subject><subject>Optimization</subject><subject>Pancreatic islet transplantation</subject><subject>Stromal cells</subject><subject>Tissue‐specific Stem Cells</subject><subject>Transplantation</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc-K1TAUh4Moznh14QtIwY0uOpPTpG2yEYZh_AMjs3BchzQ9vc3QJtckVa4rH8Fn9ElMveOggptzAvn4-B1-hDwFegKUVqcx4XzCgPF75BhqLksuQdzPb9o0ZU2lPCKPYryhFHgtxENyxEBCJXl9TNTVLtnZfrVuW3SYdGFwmophcSZZ74o0Br9sx2LGiM6M-1lPRUzBr3slf3z7PmNvdcK-mG3yZvSuD1YXKWgXBwyPyYNBTxGf3O4N-fj64vr8bXl59ebd-dllaThnvDTYtTUDoLrudCU4om57QymVOWmfJ-VQC9A9F301NJzXYPquMqZCEBQGtiGvDt7d0uVEBl1OMKldsLMOe-W1VX__ODuqrf-sWhAtE5AFL24FwX9aMCY127ieqB36JaqKMd5S2oDM6PN_0Bu_BJfPy5TgrG1knhvy8kCZ4GMMONyFAarW2tRam1pry-yzP9Pfkb97ysDpAfhiJ9z_36Q-XF-8_6X8CRCGpVQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Rackham, Chloe L.</creator><creator>Hubber, Ella L.</creator><creator>Czajka, Anna</creator><creator>Malik, Afshan N.</creator><creator>King, Aileen J. F.</creator><creator>Jones, Peter M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Oxford University Press</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5759-7985</orcidid><orcidid>https://orcid.org/0000-0003-1201-2335</orcidid><orcidid>https://orcid.org/0000-0003-4314-6109</orcidid><orcidid>https://orcid.org/0000-0003-1864-9302</orcidid><orcidid>https://orcid.org/0000-0001-7207-1666</orcidid></search><sort><creationdate>202004</creationdate><title>Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer</title><author>Rackham, Chloe L. ; Hubber, Ella L. ; Czajka, Anna ; Malik, Afshan N. ; King, Aileen J. F. ; Jones, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>Fluorescence</topic><topic>Glucose</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>In vivo methods and tests</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Islet cells</topic><topic>islet transplantation</topic><topic>Islets of Langerhans Transplantation - methods</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>mesenchymal stromal cells</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial transfer</topic><topic>Optimization</topic><topic>Pancreatic islet transplantation</topic><topic>Stromal cells</topic><topic>Tissue‐specific Stem Cells</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rackham, Chloe L.</creatorcontrib><creatorcontrib>Hubber, Ella L.</creatorcontrib><creatorcontrib>Czajka, Anna</creatorcontrib><creatorcontrib>Malik, Afshan N.</creatorcontrib><creatorcontrib>King, Aileen J. F.</creatorcontrib><creatorcontrib>Jones, Peter M.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rackham, Chloe L.</au><au>Hubber, Ella L.</au><au>Czajka, Anna</au><au>Malik, Afshan N.</au><au>King, Aileen J. F.</au><au>Jones, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2020-04</date><risdate>2020</risdate><volume>38</volume><issue>4</issue><spage>574</spage><epage>584</epage><pages>574-584</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Pretransplant islet culture is associated with the loss of islet cell mass and insulin secretory function. Insulin secretion from islet β‐cells is primarily controlled by mitochondrial ATP generation in response to elevations in extracellular glucose. Coculture of islets with mesenchymal stromal cells (MSCs) improves islet insulin secretory function in vitro, which correlates with superior islet graft function in vivo. This study aimed to determine whether the improved islet function is associated with mitochondrial transfer from MSCs to cocultured islets. We have demonstrated mitochondrial transfer from human adipose MSCs to human islet β‐cells in coculture. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially, through tunneling nanotube (TNT)‐like structures. The extent of mitochondrial transfer to clinically relevant human islets was greater than that to experimental mouse islets. Human islets are subjected to more extreme cellular stressors than mouse islets, which may induce “danger signals” for MSCs, initiating the donation of MSC‐derived mitochondria to human islet β‐cells. Our observations of increased MSC‐mediated mitochondria transfer to hypoxia‐exposed mouse islets are consistent with this and suggest that MSCs are most effective in supporting the secretory function of compromised β‐cells. Ensuring optimal MSC‐derived mitochondria transfer in preculture and/or cotransplantation strategies could be used to maximize the therapeutic efficacy of MSCs, thus enabling the more widespread application of clinical islet transplantation. Human mesenchymal stromal cells (MSCs) transfer their mitochondria to cocultured human islet β‐cells. Fluorescence imaging showed that mitochondrial transfer occurs, at least partially through tunneling nanotube‐like structures. MSC‐mediated mitochondrial donation to islet β‐cells represents a novel mechanism of enhanced islet β‐cell function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31912945</pmid><doi>10.1002/stem.3134</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5759-7985</orcidid><orcidid>https://orcid.org/0000-0003-1201-2335</orcidid><orcidid>https://orcid.org/0000-0003-4314-6109</orcidid><orcidid>https://orcid.org/0000-0003-1864-9302</orcidid><orcidid>https://orcid.org/0000-0001-7207-1666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2020-04, Vol.38 (4), p.574-584
issn 1066-5099
1549-4918
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187381
source Oxford Journals Online
subjects Animals
Beta cells
Cell culture
Cells, Cultured
diabetes
Diabetes Mellitus, Experimental - therapy
Fluorescence
Glucose
Humans
Hypoxia
In vivo methods and tests
Insulin
Insulin secretion
Insulin-Secreting Cells - metabolism
Islet cells
islet transplantation
Islets of Langerhans Transplantation - methods
Mesenchymal stem cells
Mesenchymal Stem Cells - metabolism
mesenchymal stromal cells
Mesenchyme
Mice
Mitochondria
Mitochondria - metabolism
mitochondrial transfer
Optimization
Pancreatic islet transplantation
Stromal cells
Tissue‐specific Stem Cells
Transplantation
title Optimizing beta cell function through mesenchymal stromal cell‐mediated mitochondria transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20beta%20cell%20function%20through%20mesenchymal%20stromal%20cell%E2%80%90mediated%20mitochondria%20transfer&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Rackham,%20Chloe%20L.&rft.date=2020-04&rft.volume=38&rft.issue=4&rft.spage=574&rft.epage=584&rft.pages=574-584&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.3134&rft_dat=%3Cproquest_pubme%3E2384376984%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4434-ceb753110a5ba284eea7dc0009191d091041581ad48d2f64451cdb2cc2e1801f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384376984&rft_id=info:pmid/31912945&rfr_iscdi=true