Loading…
Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins
Summary Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of...
Saved in:
Published in: | The Plant journal : for cell and molecular biology 2020-03, Vol.101 (6), p.1303-1317 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003 |
---|---|
cites | cdi_FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003 |
container_end_page | 1317 |
container_issue | 6 |
container_start_page | 1303 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 101 |
creator | Potuschak, Thomas Palatnik, Javier Schommer, Carla Sierro, Nicolas Ivanov, Nikolai V. Kwon, Yerim Genschik, Pascal Davière, Jean‐Michel Otten, Léon |
description | Summary
Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE‐2‐6b, but not 2×35S:TE‐1‐6b‐L or 2×35S:TE‐1‐6b‐R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN‐like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN‐like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE‐2‐6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw‐D plants. Co‐expression of green fluorescent protein (GFP)‐tagged TCPs with native or red fluorescent protein (RFP)‐tagged TE‐6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double‐hybrid experiments confirmed 6B/TCP binding and showed that TE‐1‐6B‐L and TE‐1‐6B‐R bind a smaller set of TCP proteins than TE‐2‐6B. A single nucleotide mutation in TE‐1‐6B‐R enlarged its TCP‐binding repertoire to that of TE‐2‐6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE‐2‐6B targets the TCP4 DNA‐binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE‐encoded 6b genes.
Significance Statement
It was found previously that the Agrobacterium‐derived TE‐2‐6b gene from Nicotiana otophora induces strong growth effects in Nicotiana tabacum. However, the molecular mechanism has remained unknown. We show here that TE‐2‐6b induces a jaw‐D‐like phenotype in Arabidopsis – known to result from a decrease in CIN‐like TCPs – and that different TE‐6B proteins interact with different TCP subsets, thus providing insights into the molecular mechanism by which TE‐6B proteins stimulate plant growth. |
doi_str_mv | 10.1111/tpj.14591 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384586383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvCgRdAlrjAIa3Hjh3ngrQs_xZVpYdF4mY5jtP1krVTO2m1Nx6BZ-RJcLulAiTm4JE1v_n0jT6EngE5hlwn47A5hpLX8ADNgAleMGBfH6IZqQUpqhLoATpMaUMIVEyUj9EBA8FrSWCGrpZ-7Ro3uuBx6PA86sa1YUgu4XGte6e9xovl2c_vP3r3zeLV4hyPUftkohtulzptxhATbnZ4fhFDk782ummLV3nn7dk8v9ab0NoWizd4iGG0zqcn6FGn-2Sf3vUj9OX9u9XiY3H6-cNyMT8tTFkyKBouDXS2q3lHiGCyERQ4yFoz0zEpuWBVqbXRedAKSinhJW2JbW0l6kYTwo7Q673uMDVb2xrrs_teDdFtddypoJ36e-LdWl2EK1WBrFh9I_DyTiCGy8mmUW1dMrbvtbdhSooyILQmlFQZffEPuglT9Pm8TMmSy3wAy9SrPWViSCna7t4MEHWTpsppqts0M_v8T_f35O_4MnCyB65db3f_V1Kr8097yV9j-KzS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384586383</pqid></control><display><type>article</type><title>Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins</title><source>Wiley</source><source>EZB Electronic Journals Library</source><creator>Potuschak, Thomas ; Palatnik, Javier ; Schommer, Carla ; Sierro, Nicolas ; Ivanov, Nikolai V. ; Kwon, Yerim ; Genschik, Pascal ; Davière, Jean‐Michel ; Otten, Léon</creator><creatorcontrib>Potuschak, Thomas ; Palatnik, Javier ; Schommer, Carla ; Sierro, Nicolas ; Ivanov, Nikolai V. ; Kwon, Yerim ; Genschik, Pascal ; Davière, Jean‐Michel ; Otten, Léon</creatorcontrib><description>Summary
Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE‐2‐6b, but not 2×35S:TE‐1‐6b‐L or 2×35S:TE‐1‐6b‐R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN‐like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN‐like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE‐2‐6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw‐D plants. Co‐expression of green fluorescent protein (GFP)‐tagged TCPs with native or red fluorescent protein (RFP)‐tagged TE‐6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double‐hybrid experiments confirmed 6B/TCP binding and showed that TE‐1‐6B‐L and TE‐1‐6B‐R bind a smaller set of TCP proteins than TE‐2‐6B. A single nucleotide mutation in TE‐1‐6B‐R enlarged its TCP‐binding repertoire to that of TE‐2‐6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE‐2‐6B targets the TCP4 DNA‐binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE‐encoded 6b genes.
Significance Statement
It was found previously that the Agrobacterium‐derived TE‐2‐6b gene from Nicotiana otophora induces strong growth effects in Nicotiana tabacum. However, the molecular mechanism has remained unknown. We show here that TE‐2‐6b induces a jaw‐D‐like phenotype in Arabidopsis – known to result from a decrease in CIN‐like TCPs – and that different TE‐6B proteins interact with different TCP subsets, thus providing insights into the molecular mechanism by which TE‐6B proteins stimulate plant growth.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14591</identifier><identifier>PMID: 31659801</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>6b oncogene ; Agrobacterium ; Agrobacterium - metabolism ; Antigens ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - antagonists & inhibitors ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Bacterial Proteins - metabolism ; Binding ; Cell division ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - metabolism ; Fluorescence ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic transformation ; Green fluorescent protein ; Jaw ; jaw‐D phenotype ; Leaves ; Microscopy, Confocal ; Modules ; Mutants ; Mutation ; natural transformant ; Nicotiana - metabolism ; Nicotiana - microbiology ; Nicotiana otophora ; Nucleotides ; Original ; Phenotypes ; Plant Diseases - microbiology ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plants ; Polymerase Chain Reaction ; Proliferating cell nuclear antigen ; Proteins ; Red fluorescent protein ; TCP genes ; Transcription activation ; Transcription factors ; Transcription Factors - antagonists & inhibitors ; Two-Hybrid System Techniques ; Yeasts</subject><ispartof>The Plant journal : for cell and molecular biology, 2020-03, Vol.101 (6), p.1303-1317</ispartof><rights>2019 The Authors published by Society for Experimental Biology and John Wiley & Sons Ltd</rights><rights>2019 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003</citedby><cites>FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003</cites><orcidid>0000-0003-1122-7684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potuschak, Thomas</creatorcontrib><creatorcontrib>Palatnik, Javier</creatorcontrib><creatorcontrib>Schommer, Carla</creatorcontrib><creatorcontrib>Sierro, Nicolas</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Kwon, Yerim</creatorcontrib><creatorcontrib>Genschik, Pascal</creatorcontrib><creatorcontrib>Davière, Jean‐Michel</creatorcontrib><creatorcontrib>Otten, Léon</creatorcontrib><title>Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE‐2‐6b, but not 2×35S:TE‐1‐6b‐L or 2×35S:TE‐1‐6b‐R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN‐like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN‐like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE‐2‐6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw‐D plants. Co‐expression of green fluorescent protein (GFP)‐tagged TCPs with native or red fluorescent protein (RFP)‐tagged TE‐6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double‐hybrid experiments confirmed 6B/TCP binding and showed that TE‐1‐6B‐L and TE‐1‐6B‐R bind a smaller set of TCP proteins than TE‐2‐6B. A single nucleotide mutation in TE‐1‐6B‐R enlarged its TCP‐binding repertoire to that of TE‐2‐6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE‐2‐6B targets the TCP4 DNA‐binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE‐encoded 6b genes.
Significance Statement
It was found previously that the Agrobacterium‐derived TE‐2‐6b gene from Nicotiana otophora induces strong growth effects in Nicotiana tabacum. However, the molecular mechanism has remained unknown. We show here that TE‐2‐6b induces a jaw‐D‐like phenotype in Arabidopsis – known to result from a decrease in CIN‐like TCPs – and that different TE‐6B proteins interact with different TCP subsets, thus providing insights into the molecular mechanism by which TE‐6B proteins stimulate plant growth.</description><subject>6b oncogene</subject><subject>Agrobacterium</subject><subject>Agrobacterium - metabolism</subject><subject>Antigens</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - antagonists & inhibitors</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding</subject><subject>Cell division</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic transformation</subject><subject>Green fluorescent protein</subject><subject>Jaw</subject><subject>jaw‐D phenotype</subject><subject>Leaves</subject><subject>Microscopy, Confocal</subject><subject>Modules</subject><subject>Mutants</subject><subject>Mutation</subject><subject>natural transformant</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - microbiology</subject><subject>Nicotiana otophora</subject><subject>Nucleotides</subject><subject>Original</subject><subject>Phenotypes</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plants</subject><subject>Polymerase Chain Reaction</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proteins</subject><subject>Red fluorescent protein</subject><subject>TCP genes</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - antagonists & inhibitors</subject><subject>Two-Hybrid System Techniques</subject><subject>Yeasts</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc9u1DAQxi0EotvCgRdAlrjAIa3Hjh3ngrQs_xZVpYdF4mY5jtP1krVTO2m1Nx6BZ-RJcLulAiTm4JE1v_n0jT6EngE5hlwn47A5hpLX8ADNgAleMGBfH6IZqQUpqhLoATpMaUMIVEyUj9EBA8FrSWCGrpZ-7Ro3uuBx6PA86sa1YUgu4XGte6e9xovl2c_vP3r3zeLV4hyPUftkohtulzptxhATbnZ4fhFDk782ummLV3nn7dk8v9ab0NoWizd4iGG0zqcn6FGn-2Sf3vUj9OX9u9XiY3H6-cNyMT8tTFkyKBouDXS2q3lHiGCyERQ4yFoz0zEpuWBVqbXRedAKSinhJW2JbW0l6kYTwo7Q673uMDVb2xrrs_teDdFtddypoJ36e-LdWl2EK1WBrFh9I_DyTiCGy8mmUW1dMrbvtbdhSooyILQmlFQZffEPuglT9Pm8TMmSy3wAy9SrPWViSCna7t4MEHWTpsppqts0M_v8T_f35O_4MnCyB65db3f_V1Kr8097yV9j-KzS</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Potuschak, Thomas</creator><creator>Palatnik, Javier</creator><creator>Schommer, Carla</creator><creator>Sierro, Nicolas</creator><creator>Ivanov, Nikolai V.</creator><creator>Kwon, Yerim</creator><creator>Genschik, Pascal</creator><creator>Davière, Jean‐Michel</creator><creator>Otten, Léon</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1122-7684</orcidid></search><sort><creationdate>202003</creationdate><title>Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins</title><author>Potuschak, Thomas ; Palatnik, Javier ; Schommer, Carla ; Sierro, Nicolas ; Ivanov, Nikolai V. ; Kwon, Yerim ; Genschik, Pascal ; Davière, Jean‐Michel ; Otten, Léon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>6b oncogene</topic><topic>Agrobacterium</topic><topic>Agrobacterium - metabolism</topic><topic>Antigens</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - antagonists & inhibitors</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding</topic><topic>Cell division</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic transformation</topic><topic>Green fluorescent protein</topic><topic>Jaw</topic><topic>jaw‐D phenotype</topic><topic>Leaves</topic><topic>Microscopy, Confocal</topic><topic>Modules</topic><topic>Mutants</topic><topic>Mutation</topic><topic>natural transformant</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - microbiology</topic><topic>Nicotiana otophora</topic><topic>Nucleotides</topic><topic>Original</topic><topic>Phenotypes</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plants</topic><topic>Polymerase Chain Reaction</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proteins</topic><topic>Red fluorescent protein</topic><topic>TCP genes</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - antagonists & inhibitors</topic><topic>Two-Hybrid System Techniques</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potuschak, Thomas</creatorcontrib><creatorcontrib>Palatnik, Javier</creatorcontrib><creatorcontrib>Schommer, Carla</creatorcontrib><creatorcontrib>Sierro, Nicolas</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Kwon, Yerim</creatorcontrib><creatorcontrib>Genschik, Pascal</creatorcontrib><creatorcontrib>Davière, Jean‐Michel</creatorcontrib><creatorcontrib>Otten, Léon</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potuschak, Thomas</au><au>Palatnik, Javier</au><au>Schommer, Carla</au><au>Sierro, Nicolas</au><au>Ivanov, Nikolai V.</au><au>Kwon, Yerim</au><au>Genschik, Pascal</au><au>Davière, Jean‐Michel</au><au>Otten, Léon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2020-03</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>1303</spage><epage>1317</epage><pages>1303-1317</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE‐2‐6b, but not 2×35S:TE‐1‐6b‐L or 2×35S:TE‐1‐6b‐R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN‐like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN‐like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE‐2‐6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw‐D plants. Co‐expression of green fluorescent protein (GFP)‐tagged TCPs with native or red fluorescent protein (RFP)‐tagged TE‐6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double‐hybrid experiments confirmed 6B/TCP binding and showed that TE‐1‐6B‐L and TE‐1‐6B‐R bind a smaller set of TCP proteins than TE‐2‐6B. A single nucleotide mutation in TE‐1‐6B‐R enlarged its TCP‐binding repertoire to that of TE‐2‐6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE‐2‐6B targets the TCP4 DNA‐binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE‐encoded 6b genes.
Significance Statement
It was found previously that the Agrobacterium‐derived TE‐2‐6b gene from Nicotiana otophora induces strong growth effects in Nicotiana tabacum. However, the molecular mechanism has remained unknown. We show here that TE‐2‐6b induces a jaw‐D‐like phenotype in Arabidopsis – known to result from a decrease in CIN‐like TCPs – and that different TE‐6B proteins interact with different TCP subsets, thus providing insights into the molecular mechanism by which TE‐6B proteins stimulate plant growth.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31659801</pmid><doi>10.1111/tpj.14591</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1122-7684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2020-03, Vol.101 (6), p.1303-1317 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187390 |
source | Wiley; EZB Electronic Journals Library |
subjects | 6b oncogene Agrobacterium Agrobacterium - metabolism Antigens Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins - antagonists & inhibitors Arabidopsis Proteins - metabolism Arabidopsis thaliana Bacterial Proteins - metabolism Binding Cell division Deoxyribonucleic acid DNA DNA, Bacterial - metabolism Fluorescence Gene expression Gene Expression Profiling Genes Genetic transformation Green fluorescent protein Jaw jaw‐D phenotype Leaves Microscopy, Confocal Modules Mutants Mutation natural transformant Nicotiana - metabolism Nicotiana - microbiology Nicotiana otophora Nucleotides Original Phenotypes Plant Diseases - microbiology Plant Leaves - metabolism Plant Leaves - microbiology Plants Polymerase Chain Reaction Proliferating cell nuclear antigen Proteins Red fluorescent protein TCP genes Transcription activation Transcription factors Transcription Factors - antagonists & inhibitors Two-Hybrid System Techniques Yeasts |
title | Inhibition of Arabidopsis thaliana CIN‐like TCP transcription factors by Agrobacterium T‐DNA‐encoded 6B proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Arabidopsis%20thaliana%20CIN%E2%80%90like%20TCP%20transcription%20factors%20by%20Agrobacterium%20T%E2%80%90DNA%E2%80%90encoded%206B%20proteins&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Potuschak,%20Thomas&rft.date=2020-03&rft.volume=101&rft.issue=6&rft.spage=1303&rft.epage=1317&rft.pages=1303-1317&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14591&rft_dat=%3Cproquest_pubme%3E2384586383%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4431-b58c1fef95f00638b6215189a3cf38856374aaca8b6d62220542d0ede769ba003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384586383&rft_id=info:pmid/31659801&rfr_iscdi=true |