Loading…

Routine Karyotyping Reveals Frequent Mosaic Reciprocal Chromosome Translocations in Swine: Prevalence, Pedigree, and Litter Size

In the routine commercial karyotype analysis on 5,481 boars, we identified 32 carriers of mosaic reciprocal translocations, half of which were carrying a specific recurrent translocation, mos t(7;9). An additional 7 mosaic translocations were identified through lymphocyte karyotype analysis from par...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-05, Vol.10 (1), p.7471-7471, Article 7471
Main Authors: Rezaei, Samira, Donaldson, Brendan, Villagomez, Daniel A. F., Revay, Tamas, Mary, Nicolas, Grossi, Daniela A., King, W. Allan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the routine commercial karyotype analysis on 5,481 boars, we identified 32 carriers of mosaic reciprocal translocations, half of which were carrying a specific recurrent translocation, mos t(7;9). An additional 7 mosaic translocations were identified through lymphocyte karyotype analysis from parents and relatives of mosaic carriers (n = 45), a control group of non-carrier boars (n = 73), and a mitogen assessment study (n = 20), bringing the total number of mosaic carriers to 39 cases. Mosaic translocations in all carriers were recognized to be confined to hematopoietic cells as no translocations were identified in fibroblasts cells of the carriers. In addition, negative impact on reproduction was not observed as the fertility of the carriers and their relatives were comparable to breed averages, and cryptic mosaicism was not detected in the family tree. This paper presents the first study of mosaic reciprocal translocations identified in swine through routine screening practices on reproductively unproven breeding boars while presenting evidence that these type of chromosome abnormalities are not associated with any affected phenotype on the carrier animals. In addition, the detection of recurrent mosaic translocations in this study may emphasize the non-random nature of mosaic rearrangements in swine and the potential role of genomic elements in their formation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-64134-w