Loading…

Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus

Hippocampus is one of the most vulnerable brain regions in terms of age-related pathological change. Exercise is presumed to delay the aging process and promote health because it seems to improve the function of most of the aging mechanisms. The purpose of this study is to evaluate the effects of sw...

Full description

Saved in:
Bibliographic Details
Published in:Aging (Albany, NY.) NY.), 2020-04, Vol.12 (8), p.6852-6864
Main Authors: Lin, Jing-Ying, Kuo, Wei-Wen, Baskaran, Rathinasamy, Kuo, Chia-Hua, Chen, Yun-An, Chen, William Shao-Tsu, Ho, Tsung-Jung, Day, Cecilia Hsuan, Mahalakshmi, B, Huang, Chih-Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hippocampus is one of the most vulnerable brain regions in terms of age-related pathological change. Exercise is presumed to delay the aging process and promote health because it seems to improve the function of most of the aging mechanisms. The purpose of this study is to evaluate the effects of swimming exercise training on brain inflammation, apoptotic and survival pathways in the hippocampus of D-galactose-induced aging in SD rats. The rats were allocated to the following groups: (1) control; (2) swimming exercise; (3) induced-aging by injecting D-galactose; (4) induced-aging rats with swimming exercise. The longevity-related AMPK/SIRT1/PGC-1α signaling pathway and brain IGF1/PI3K/Akt survival pathway were significantly reduced in D-galactose-induced aging group compared to non-aging control group and increased after exercise training. The inflammation pathway markers were over-expressed in induced-aging hippocampus, exercise significantly inhibited the inflammatory signaling activity. Fas-dependent and mitochondrial-dependent apoptotic pathways were significantly increased in the induced-aging group relative to the control group whereas they were decreased in the aging-exercise group. This study demonstrated that swimming exercise not only reduced aging-induced brain apoptosis and inflammatory signaling activity, but also enhanced the survival pathways in the hippocampus, which provides one of the new beneficial effects for exercise training in aging brain.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.103046