Loading…

Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study

Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-05, Vol.10 (1), p.7695-7695, Article 7695
Main Authors: Guerra, Andrea, Ranieri, Federico, Falato, Emma, Musumeci, Gabriella, Di Santo, Alessandro, Asci, Francesco, Di Pino, Giovanni, Suppa, Antonio, Berardelli, Alfredo, Di Lazzaro, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-64717-7