Loading…
Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials
Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wa...
Saved in:
Published in: | Environmental science & technology 2020-04, Vol.54 (7), p.4583-4591 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3 |
---|---|
cites | cdi_FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3 |
container_end_page | 4591 |
container_issue | 7 |
container_start_page | 4583 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Sigmund, Gabriel Gharasoo, Mehdi Hüffer, Thorsten Hofmann, Thilo |
description | Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log K F and n (R 2 > 0.98 for log K F, and R 2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided. |
doi_str_mv | 10.1021/acs.est.9b06287 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388874594</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS1ERYfCmh2yxBJlajtxHhukanhVmtKKh2Bn3dg3My6pnToOCP4H_7eOZjqCBasry98559qHkGecLTkT_BT0uMQxLpuWlaKuHpAFl4Jlspb8IVkwxvOsyctvx-TxOF4zxkTO6kfkOBdcFCVrFuTPa8SBrhGCs25DP-AUoE8j_vThOz0bhuBBb2nnA70KaKyOMxa3SD_5METrHfUdPffO_oa2RwrO0CvfQ6CXYQPO6vnUTxFcHGn0FOhXa5B-BLfBWbmC0HoHGv000guIGCz04xNy1KWBT_fzhHx5--bz6n22vnx3vjpbZ1DIKmZGd7Ju8gZkxaumRtNJXeZ1WVQAElrkRjMwJZdcpM8xaLBqK8GbnHeiBdD5CXm18x2m9gaNRhfT89UQ7A2EX8qDVf_eOLtVG_9DVYLJFJQMXuwNgr-dUhPq2k_BpZ2VyOu6rgrZFIk63VE6-HEM2B0SOFNzjyr1qGb1vsekeP73Ygf-vrgEvNwBs_KQ-T-7O2DVrI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388874594</pqid></control><display><type>article</type><title>Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sigmund, Gabriel ; Gharasoo, Mehdi ; Hüffer, Thorsten ; Hofmann, Thilo</creator><creatorcontrib>Sigmund, Gabriel ; Gharasoo, Mehdi ; Hüffer, Thorsten ; Hofmann, Thilo</creatorcontrib><description>Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log K F and n (R 2 > 0.98 for log K F, and R 2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b06287</identifier><identifier>PMID: 32124609</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Activated carbon ; Carbon nanotubes ; Carbonaceous materials ; Charcoal ; Contaminants ; Deep learning ; Drinking water ; Fullerenes ; Graphical user interface ; Machine learning ; Mathematical models ; Nanotechnology ; Nanotubes ; Neural networks ; Organic compounds ; Parameters ; Pollutants ; Sorbents ; Sorption ; Wastewater pollution ; Wastewater treatment ; Water filtration ; Water pollution ; Water purification ; Water treatment</subject><ispartof>Environmental science & technology, 2020-04, Vol.54 (7), p.4583-4591</ispartof><rights>Copyright American Chemical Society Apr 7, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3</citedby><cites>FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3</cites><orcidid>0000-0001-8929-6933 ; 0000-0003-2068-0878 ; 0000-0002-5639-8789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigmund, Gabriel</creatorcontrib><creatorcontrib>Gharasoo, Mehdi</creatorcontrib><creatorcontrib>Hüffer, Thorsten</creatorcontrib><creatorcontrib>Hofmann, Thilo</creatorcontrib><title>Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log K F and n (R 2 > 0.98 for log K F, and R 2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.</description><subject>Activated carbon</subject><subject>Carbon nanotubes</subject><subject>Carbonaceous materials</subject><subject>Charcoal</subject><subject>Contaminants</subject><subject>Deep learning</subject><subject>Drinking water</subject><subject>Fullerenes</subject><subject>Graphical user interface</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Neural networks</subject><subject>Organic compounds</subject><subject>Parameters</subject><subject>Pollutants</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Wastewater pollution</subject><subject>Wastewater treatment</subject><subject>Water filtration</subject><subject>Water pollution</subject><subject>Water purification</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv1DAUhS1ERYfCmh2yxBJlajtxHhukanhVmtKKh2Bn3dg3My6pnToOCP4H_7eOZjqCBasry98559qHkGecLTkT_BT0uMQxLpuWlaKuHpAFl4Jlspb8IVkwxvOsyctvx-TxOF4zxkTO6kfkOBdcFCVrFuTPa8SBrhGCs25DP-AUoE8j_vThOz0bhuBBb2nnA70KaKyOMxa3SD_5METrHfUdPffO_oa2RwrO0CvfQ6CXYQPO6vnUTxFcHGn0FOhXa5B-BLfBWbmC0HoHGv000guIGCz04xNy1KWBT_fzhHx5--bz6n22vnx3vjpbZ1DIKmZGd7Ju8gZkxaumRtNJXeZ1WVQAElrkRjMwJZdcpM8xaLBqK8GbnHeiBdD5CXm18x2m9gaNRhfT89UQ7A2EX8qDVf_eOLtVG_9DVYLJFJQMXuwNgr-dUhPq2k_BpZ2VyOu6rgrZFIk63VE6-HEM2B0SOFNzjyr1qGb1vsekeP73Ygf-vrgEvNwBs_KQ-T-7O2DVrI0</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Sigmund, Gabriel</creator><creator>Gharasoo, Mehdi</creator><creator>Hüffer, Thorsten</creator><creator>Hofmann, Thilo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8929-6933</orcidid><orcidid>https://orcid.org/0000-0003-2068-0878</orcidid><orcidid>https://orcid.org/0000-0002-5639-8789</orcidid></search><sort><creationdate>20200407</creationdate><title>Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials</title><author>Sigmund, Gabriel ; Gharasoo, Mehdi ; Hüffer, Thorsten ; Hofmann, Thilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Carbon nanotubes</topic><topic>Carbonaceous materials</topic><topic>Charcoal</topic><topic>Contaminants</topic><topic>Deep learning</topic><topic>Drinking water</topic><topic>Fullerenes</topic><topic>Graphical user interface</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Neural networks</topic><topic>Organic compounds</topic><topic>Parameters</topic><topic>Pollutants</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Wastewater pollution</topic><topic>Wastewater treatment</topic><topic>Water filtration</topic><topic>Water pollution</topic><topic>Water purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigmund, Gabriel</creatorcontrib><creatorcontrib>Gharasoo, Mehdi</creatorcontrib><creatorcontrib>Hüffer, Thorsten</creatorcontrib><creatorcontrib>Hofmann, Thilo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigmund, Gabriel</au><au>Gharasoo, Mehdi</au><au>Hüffer, Thorsten</au><au>Hofmann, Thilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-04-07</date><risdate>2020</risdate><volume>54</volume><issue>7</issue><spage>4583</spage><epage>4591</epage><pages>4583-4591</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log K F and n (R 2 > 0.98 for log K F, and R 2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32124609</pmid><doi>10.1021/acs.est.9b06287</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8929-6933</orcidid><orcidid>https://orcid.org/0000-0003-2068-0878</orcidid><orcidid>https://orcid.org/0000-0002-5639-8789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-04, Vol.54 (7), p.4583-4591 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205386 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Activated carbon Carbon nanotubes Carbonaceous materials Charcoal Contaminants Deep learning Drinking water Fullerenes Graphical user interface Machine learning Mathematical models Nanotechnology Nanotubes Neural networks Organic compounds Parameters Pollutants Sorbents Sorption Wastewater pollution Wastewater treatment Water filtration Water pollution Water purification Water treatment |
title | Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Neural%20Network%20Approach%20for%20Predicting%20the%20Sorption%20of%20Ionizable%20and%20Polar%20Organic%20Pollutants%20to%20a%20Wide%20Range%20of%20Carbonaceous%20Materials&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sigmund,%20Gabriel&rft.date=2020-04-07&rft.volume=54&rft.issue=7&rft.spage=4583&rft.epage=4591&rft.pages=4583-4591&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b06287&rft_dat=%3Cproquest_pubme%3E2388874594%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a457t-dcf58939a571798edf5c638647aa5abe1dc0ad61512287dede7b721931f2baac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388874594&rft_id=info:pmid/32124609&rfr_iscdi=true |