Loading…
Convex combination sequence kernel association test for rare‐variant studies
We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a diff...
Saved in:
Published in: | Genetic epidemiology 2020-06, Vol.44 (4), p.352-367 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53 |
container_end_page | 367 |
container_issue | 4 |
container_start_page | 352 |
container_title | Genetic epidemiology |
container_volume | 44 |
creator | Posner, Daniel C. Lin, Honghuang Meigs, James B. Kolaczyk, Eric D. Dupuis, Josée |
description | We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at
α
=
2.5
×
1
0
−
6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large (
N
≥
5
,
000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants (
p
<
1
0
−
7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 (
p
=
2.1
×
1
0
−
5) and within CPLX1 (
p
=
5.3
×
1
0
−
5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies. |
doi_str_mv | 10.1002/gepi.22287 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365209043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</originalsourceid><addsrcrecordid>eNp9kc9u1DAQh60K1C6llz5AFYkLQkoZ_4kdX5CqVSmVKuAAZ8txZlu3WXuxk4XeeASekSfBJW0FHDjNYb75ND_9CDmkcEwB2OtL3PhjxlirdsiCgm5rxhR7QhagBK2B62aPPMv5GoBSoZtdssdZOeSKLcj7ZQxb_Fa5uO58sKOPocr4ZcLgsLrBFHCobM7R-Xk3Yh6rVUxVsgl_fv-xtcnbMFZ5nHqP-Tl5urJDxoP7uU8-vz39tHxXX3w4O1-eXNROiFbVuoW2oVK2nPYoqFTKyk5D36mVEyi15J1kQvSdU63smGgZNKCYhoZxAX3D98mb2buZujX2DsOY7GA2ya9tujXRevP3Jvgrcxm3RhVTI2kRvLwXpFjS5tGsfXY4DDZgnLJhXDYMNAhe0Bf_oNdxSqHEK5QuOXjxFerVTLkUc064enyGgrmrydzVZH7XVOCjP99_RB96KQCdga9-wNv_qMzZ6cfzWfoLUSGdrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398513613</pqid></control><display><type>article</type><title>Convex combination sequence kernel association test for rare‐variant studies</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</creator><creatorcontrib>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</creatorcontrib><description>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at
α
=
2.5
×
1
0
−
6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large (
N
≥
5
,
000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants (
p
<
1
0
−
7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 (
p
=
2.1
×
1
0
−
5) and within CPLX1 (
p
=
5.3
×
1
0
−
5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22287</identifier><identifier>PMID: 32100372</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptor Proteins, Vesicular Transport - genetics ; Algorithms ; Blood Glucose - analysis ; convex optimization ; Fasting ; fasting glucose ; Genome-Wide Association Study ; Genomes ; Glucose ; Humans ; Insulin ; Insulin Resistance ; Insulin secretion ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Laboratory testing ; Longitudinal Studies ; Models, Genetic ; Models, Statistical ; Nerve Tissue Proteins - genetics ; Obesity - genetics ; Obesity - pathology ; Pancreas ; Polymorphism, Single Nucleotide ; rare variant association study ; rho-Associated Kinases - genetics ; SKAT ; Statistical analysis</subject><ispartof>Genetic epidemiology, 2020-06, Vol.44 (4), p.352-367</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</citedby><cites>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</cites><orcidid>0000-0002-3056-6924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32100372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Posner, Daniel C.</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Meigs, James B.</creatorcontrib><creatorcontrib>Kolaczyk, Eric D.</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><title>Convex combination sequence kernel association test for rare‐variant studies</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at
α
=
2.5
×
1
0
−
6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large (
N
≥
5
,
000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants (
p
<
1
0
−
7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 (
p
=
2.1
×
1
0
−
5) and within CPLX1 (
p
=
5.3
×
1
0
−
5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</description><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Algorithms</subject><subject>Blood Glucose - analysis</subject><subject>convex optimization</subject><subject>Fasting</subject><subject>fasting glucose</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Laboratory testing</subject><subject>Longitudinal Studies</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Obesity - genetics</subject><subject>Obesity - pathology</subject><subject>Pancreas</subject><subject>Polymorphism, Single Nucleotide</subject><subject>rare variant association study</subject><subject>rho-Associated Kinases - genetics</subject><subject>SKAT</subject><subject>Statistical analysis</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQh60K1C6llz5AFYkLQkoZ_4kdX5CqVSmVKuAAZ8txZlu3WXuxk4XeeASekSfBJW0FHDjNYb75ND_9CDmkcEwB2OtL3PhjxlirdsiCgm5rxhR7QhagBK2B62aPPMv5GoBSoZtdssdZOeSKLcj7ZQxb_Fa5uO58sKOPocr4ZcLgsLrBFHCobM7R-Xk3Yh6rVUxVsgl_fv-xtcnbMFZ5nHqP-Tl5urJDxoP7uU8-vz39tHxXX3w4O1-eXNROiFbVuoW2oVK2nPYoqFTKyk5D36mVEyi15J1kQvSdU63smGgZNKCYhoZxAX3D98mb2buZujX2DsOY7GA2ya9tujXRevP3Jvgrcxm3RhVTI2kRvLwXpFjS5tGsfXY4DDZgnLJhXDYMNAhe0Bf_oNdxSqHEK5QuOXjxFerVTLkUc064enyGgrmrydzVZH7XVOCjP99_RB96KQCdga9-wNv_qMzZ6cfzWfoLUSGdrg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Posner, Daniel C.</creator><creator>Lin, Honghuang</creator><creator>Meigs, James B.</creator><creator>Kolaczyk, Eric D.</creator><creator>Dupuis, Josée</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3056-6924</orcidid></search><sort><creationdate>202006</creationdate><title>Convex combination sequence kernel association test for rare‐variant studies</title><author>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Algorithms</topic><topic>Blood Glucose - analysis</topic><topic>convex optimization</topic><topic>Fasting</topic><topic>fasting glucose</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Laboratory testing</topic><topic>Longitudinal Studies</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Obesity - genetics</topic><topic>Obesity - pathology</topic><topic>Pancreas</topic><topic>Polymorphism, Single Nucleotide</topic><topic>rare variant association study</topic><topic>rho-Associated Kinases - genetics</topic><topic>SKAT</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Posner, Daniel C.</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Meigs, James B.</creatorcontrib><creatorcontrib>Kolaczyk, Eric D.</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Posner, Daniel C.</au><au>Lin, Honghuang</au><au>Meigs, James B.</au><au>Kolaczyk, Eric D.</au><au>Dupuis, Josée</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex combination sequence kernel association test for rare‐variant studies</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>44</volume><issue>4</issue><spage>352</spage><epage>367</epage><pages>352-367</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at
α
=
2.5
×
1
0
−
6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large (
N
≥
5
,
000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants (
p
<
1
0
−
7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 (
p
=
2.1
×
1
0
−
5) and within CPLX1 (
p
=
5.3
×
1
0
−
5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32100372</pmid><doi>10.1002/gepi.22287</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3056-6924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 2020-06, Vol.44 (4), p.352-367 |
issn | 0741-0395 1098-2272 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205561 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adaptor Proteins, Vesicular Transport - genetics Algorithms Blood Glucose - analysis convex optimization Fasting fasting glucose Genome-Wide Association Study Genomes Glucose Humans Insulin Insulin Resistance Insulin secretion Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism Laboratory testing Longitudinal Studies Models, Genetic Models, Statistical Nerve Tissue Proteins - genetics Obesity - genetics Obesity - pathology Pancreas Polymorphism, Single Nucleotide rare variant association study rho-Associated Kinases - genetics SKAT Statistical analysis |
title | Convex combination sequence kernel association test for rare‐variant studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20combination%20sequence%20kernel%20association%20test%20for%20rare%E2%80%90variant%20studies&rft.jtitle=Genetic%20epidemiology&rft.au=Posner,%20Daniel%20C.&rft.date=2020-06&rft.volume=44&rft.issue=4&rft.spage=352&rft.epage=367&rft.pages=352-367&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22287&rft_dat=%3Cproquest_pubme%3E2365209043%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398513613&rft_id=info:pmid/32100372&rfr_iscdi=true |