Loading…

Convex combination sequence kernel association test for rare‐variant studies

We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a diff...

Full description

Saved in:
Bibliographic Details
Published in:Genetic epidemiology 2020-06, Vol.44 (4), p.352-367
Main Authors: Posner, Daniel C., Lin, Honghuang, Meigs, James B., Kolaczyk, Eric D., Dupuis, Josée
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53
cites cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53
container_end_page 367
container_issue 4
container_start_page 352
container_title Genetic epidemiology
container_volume 44
creator Posner, Daniel C.
Lin, Honghuang
Meigs, James B.
Kolaczyk, Eric D.
Dupuis, Josée
description We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 − 6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants ( p < 1 0 − 7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 − 5) and within CPLX1 ( p = 5.3 × 1 0 − 5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.
doi_str_mv 10.1002/gepi.22287
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365209043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</originalsourceid><addsrcrecordid>eNp9kc9u1DAQh60K1C6llz5AFYkLQkoZ_4kdX5CqVSmVKuAAZ8txZlu3WXuxk4XeeASekSfBJW0FHDjNYb75ND_9CDmkcEwB2OtL3PhjxlirdsiCgm5rxhR7QhagBK2B62aPPMv5GoBSoZtdssdZOeSKLcj7ZQxb_Fa5uO58sKOPocr4ZcLgsLrBFHCobM7R-Xk3Yh6rVUxVsgl_fv-xtcnbMFZ5nHqP-Tl5urJDxoP7uU8-vz39tHxXX3w4O1-eXNROiFbVuoW2oVK2nPYoqFTKyk5D36mVEyi15J1kQvSdU63smGgZNKCYhoZxAX3D98mb2buZujX2DsOY7GA2ya9tujXRevP3Jvgrcxm3RhVTI2kRvLwXpFjS5tGsfXY4DDZgnLJhXDYMNAhe0Bf_oNdxSqHEK5QuOXjxFerVTLkUc064enyGgrmrydzVZH7XVOCjP99_RB96KQCdga9-wNv_qMzZ6cfzWfoLUSGdrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398513613</pqid></control><display><type>article</type><title>Convex combination sequence kernel association test for rare‐variant studies</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</creator><creatorcontrib>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</creatorcontrib><description>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 − 6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants ( p &lt; 1 0 − 7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 − 5) and within CPLX1 ( p = 5.3 × 1 0 − 5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22287</identifier><identifier>PMID: 32100372</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptor Proteins, Vesicular Transport - genetics ; Algorithms ; Blood Glucose - analysis ; convex optimization ; Fasting ; fasting glucose ; Genome-Wide Association Study ; Genomes ; Glucose ; Humans ; Insulin ; Insulin Resistance ; Insulin secretion ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Laboratory testing ; Longitudinal Studies ; Models, Genetic ; Models, Statistical ; Nerve Tissue Proteins - genetics ; Obesity - genetics ; Obesity - pathology ; Pancreas ; Polymorphism, Single Nucleotide ; rare variant association study ; rho-Associated Kinases - genetics ; SKAT ; Statistical analysis</subject><ispartof>Genetic epidemiology, 2020-06, Vol.44 (4), p.352-367</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</citedby><cites>FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</cites><orcidid>0000-0002-3056-6924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32100372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Posner, Daniel C.</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Meigs, James B.</creatorcontrib><creatorcontrib>Kolaczyk, Eric D.</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><title>Convex combination sequence kernel association test for rare‐variant studies</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 − 6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants ( p &lt; 1 0 − 7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 − 5) and within CPLX1 ( p = 5.3 × 1 0 − 5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</description><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Algorithms</subject><subject>Blood Glucose - analysis</subject><subject>convex optimization</subject><subject>Fasting</subject><subject>fasting glucose</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Laboratory testing</subject><subject>Longitudinal Studies</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Obesity - genetics</subject><subject>Obesity - pathology</subject><subject>Pancreas</subject><subject>Polymorphism, Single Nucleotide</subject><subject>rare variant association study</subject><subject>rho-Associated Kinases - genetics</subject><subject>SKAT</subject><subject>Statistical analysis</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQh60K1C6llz5AFYkLQkoZ_4kdX5CqVSmVKuAAZ8txZlu3WXuxk4XeeASekSfBJW0FHDjNYb75ND_9CDmkcEwB2OtL3PhjxlirdsiCgm5rxhR7QhagBK2B62aPPMv5GoBSoZtdssdZOeSKLcj7ZQxb_Fa5uO58sKOPocr4ZcLgsLrBFHCobM7R-Xk3Yh6rVUxVsgl_fv-xtcnbMFZ5nHqP-Tl5urJDxoP7uU8-vz39tHxXX3w4O1-eXNROiFbVuoW2oVK2nPYoqFTKyk5D36mVEyi15J1kQvSdU63smGgZNKCYhoZxAX3D98mb2buZujX2DsOY7GA2ya9tujXRevP3Jvgrcxm3RhVTI2kRvLwXpFjS5tGsfXY4DDZgnLJhXDYMNAhe0Bf_oNdxSqHEK5QuOXjxFerVTLkUc064enyGgrmrydzVZH7XVOCjP99_RB96KQCdga9-wNv_qMzZ6cfzWfoLUSGdrg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Posner, Daniel C.</creator><creator>Lin, Honghuang</creator><creator>Meigs, James B.</creator><creator>Kolaczyk, Eric D.</creator><creator>Dupuis, Josée</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3056-6924</orcidid></search><sort><creationdate>202006</creationdate><title>Convex combination sequence kernel association test for rare‐variant studies</title><author>Posner, Daniel C. ; Lin, Honghuang ; Meigs, James B. ; Kolaczyk, Eric D. ; Dupuis, Josée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Algorithms</topic><topic>Blood Glucose - analysis</topic><topic>convex optimization</topic><topic>Fasting</topic><topic>fasting glucose</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Laboratory testing</topic><topic>Longitudinal Studies</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Obesity - genetics</topic><topic>Obesity - pathology</topic><topic>Pancreas</topic><topic>Polymorphism, Single Nucleotide</topic><topic>rare variant association study</topic><topic>rho-Associated Kinases - genetics</topic><topic>SKAT</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Posner, Daniel C.</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Meigs, James B.</creatorcontrib><creatorcontrib>Kolaczyk, Eric D.</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Posner, Daniel C.</au><au>Lin, Honghuang</au><au>Meigs, James B.</au><au>Kolaczyk, Eric D.</au><au>Dupuis, Josée</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex combination sequence kernel association test for rare‐variant studies</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>44</volume><issue>4</issue><spage>352</spage><epage>367</epage><pages>352-367</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>We propose a novel variant set test for rare‐variant association studies, which leverages multiple single‐nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 − 6 and has greater power than SKAT(‐O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome‐wide significant associations between fasting glucose and 4‐kb windows of rare variants ( p &lt; 1 0 − 7) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 − 5) and within CPLX1 ( p = 5.3 × 1 0 − 5). These two genes were previously reported to be involved in obesity‐mediated insulin resistance and glucose‐induced insulin secretion by pancreatic beta‐cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32100372</pmid><doi>10.1002/gepi.22287</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3056-6924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2020-06, Vol.44 (4), p.352-367
issn 0741-0395
1098-2272
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205561
source Wiley-Blackwell Read & Publish Collection
subjects Adaptor Proteins, Vesicular Transport - genetics
Algorithms
Blood Glucose - analysis
convex optimization
Fasting
fasting glucose
Genome-Wide Association Study
Genomes
Glucose
Humans
Insulin
Insulin Resistance
Insulin secretion
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
Laboratory testing
Longitudinal Studies
Models, Genetic
Models, Statistical
Nerve Tissue Proteins - genetics
Obesity - genetics
Obesity - pathology
Pancreas
Polymorphism, Single Nucleotide
rare variant association study
rho-Associated Kinases - genetics
SKAT
Statistical analysis
title Convex combination sequence kernel association test for rare‐variant studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20combination%20sequence%20kernel%20association%20test%20for%20rare%E2%80%90variant%20studies&rft.jtitle=Genetic%20epidemiology&rft.au=Posner,%20Daniel%20C.&rft.date=2020-06&rft.volume=44&rft.issue=4&rft.spage=352&rft.epage=367&rft.pages=352-367&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22287&rft_dat=%3Cproquest_pubme%3E2365209043%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4487-98085166831de41677a6b90db7fc4e6963b6244dbc786b2482050729052340d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398513613&rft_id=info:pmid/32100372&rfr_iscdi=true