Loading…
Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)
Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two N...
Saved in:
Published in: | Plant biotechnology journal 2020-06, Vol.18 (6), p.1457-1471 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443 |
---|---|
cites | cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443 |
container_end_page | 1471 |
container_issue | 6 |
container_start_page | 1457 |
container_title | Plant biotechnology journal |
container_volume | 18 |
creator | Gangurde, Sunil S. Wang, Hui Yaduru, Shasidhar Pandey, Manish K. Fountain, Jake C. Chu, Ye Isleib, Thomas Holbrook, C. Corley Xavier, Alencar Culbreath, Albert K. Ozias‐Akins, Peggy Varshney, Rajeev K. Guo, Baozhu |
description | Summary
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut. |
doi_str_mv | 10.1111/pbi.13311 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7206994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322745591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</originalsourceid><addsrcrecordid>eNp1kc1uEzEQxy0EoqVw4AWQJS7JIa2_1htfkNKKj0qlcICz5bVnN6429mLvtsqNB-DAM_IkmKREgMRcxvL8_J_x_BF6TskpLXE2NP6Uck7pA3RMhawXtazYw8NZiCP0JOcbQhiVlXyMjjhdkiWr-TH6dg15BPfj63eTc7TejD4GvDHD4EOHZ9er9_NSa0wGhzsIMHqLnc8Z7A6cgo23kDK2JjjvzAg7KuM2JpyhPCr3eIgO34Hv1mPGPuABTJhGPFslY9c-4_V2iJ0BM3-KHrWmz_DsPp-gz29ef7p4t7j68PbyYnW1sEJwurCUUde0SyEZVcRYYhypJK-VUqKRElhrGeVMKLeUbdtYTlppVQNEUSNK8BP0aq87TM0GnIUwJtPrIfmNSVsdjdd_V4Jf6y7e6poRWZoUgdm9QIpfprJBvfHZQt-bAHHKmnHGalFVihb05T_oTZxSKN_TTBApasVqVqj5nrIp5pygPQxDif7lsS4e653HhX3x5_QH8repBTjbA3e-h-3_lfTH88u95E_UCbPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406479272</pqid></control><display><type>article</type><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</creator><creatorcontrib>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</creatorcontrib><description>Summary
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13311</identifier><identifier>PMID: 31808273</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Arachis hypogaea ; association mapping ; candidate genes ; Chromosomes ; Dissection ; Gene mapping ; Genes ; Genetic control ; Genomes ; linkage mapping ; nested‐association mapping ; peanut ; Peanuts ; pod weight ; Population ; Population genetics ; Populations ; Quantitative trait loci ; seed weight ; Single-nucleotide polymorphism ; Weight</subject><ispartof>Plant biotechnology journal, 2020-06, Vol.18 (6), p.1457-1471</ispartof><rights>2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</citedby><cites>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</cites><orcidid>0000-0001-7119-8649 ; 0000-0002-4562-9131 ; 0000-0002-4101-6530 ; 0000-0002-9079-7126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2406479272/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2406479272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31808273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gangurde, Sunil S.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Pandey, Manish K.</creatorcontrib><creatorcontrib>Fountain, Jake C.</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Isleib, Thomas</creatorcontrib><creatorcontrib>Holbrook, C. Corley</creatorcontrib><creatorcontrib>Xavier, Alencar</creatorcontrib><creatorcontrib>Culbreath, Albert K.</creatorcontrib><creatorcontrib>Ozias‐Akins, Peggy</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</description><subject>Arachis hypogaea</subject><subject>association mapping</subject><subject>candidate genes</subject><subject>Chromosomes</subject><subject>Dissection</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic control</subject><subject>Genomes</subject><subject>linkage mapping</subject><subject>nested‐association mapping</subject><subject>peanut</subject><subject>Peanuts</subject><subject>pod weight</subject><subject>Population</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative trait loci</subject><subject>seed weight</subject><subject>Single-nucleotide polymorphism</subject><subject>Weight</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kc1uEzEQxy0EoqVw4AWQJS7JIa2_1htfkNKKj0qlcICz5bVnN6429mLvtsqNB-DAM_IkmKREgMRcxvL8_J_x_BF6TskpLXE2NP6Uck7pA3RMhawXtazYw8NZiCP0JOcbQhiVlXyMjjhdkiWr-TH6dg15BPfj63eTc7TejD4GvDHD4EOHZ9er9_NSa0wGhzsIMHqLnc8Z7A6cgo23kDK2JjjvzAg7KuM2JpyhPCr3eIgO34Hv1mPGPuABTJhGPFslY9c-4_V2iJ0BM3-KHrWmz_DsPp-gz29ef7p4t7j68PbyYnW1sEJwurCUUde0SyEZVcRYYhypJK-VUqKRElhrGeVMKLeUbdtYTlppVQNEUSNK8BP0aq87TM0GnIUwJtPrIfmNSVsdjdd_V4Jf6y7e6poRWZoUgdm9QIpfprJBvfHZQt-bAHHKmnHGalFVihb05T_oTZxSKN_TTBApasVqVqj5nrIp5pygPQxDif7lsS4e653HhX3x5_QH8repBTjbA3e-h-3_lfTH88u95E_UCbPc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Gangurde, Sunil S.</creator><creator>Wang, Hui</creator><creator>Yaduru, Shasidhar</creator><creator>Pandey, Manish K.</creator><creator>Fountain, Jake C.</creator><creator>Chu, Ye</creator><creator>Isleib, Thomas</creator><creator>Holbrook, C. Corley</creator><creator>Xavier, Alencar</creator><creator>Culbreath, Albert K.</creator><creator>Ozias‐Akins, Peggy</creator><creator>Varshney, Rajeev K.</creator><creator>Guo, Baozhu</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7119-8649</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-4101-6530</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></search><sort><creationdate>202006</creationdate><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><author>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arachis hypogaea</topic><topic>association mapping</topic><topic>candidate genes</topic><topic>Chromosomes</topic><topic>Dissection</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic control</topic><topic>Genomes</topic><topic>linkage mapping</topic><topic>nested‐association mapping</topic><topic>peanut</topic><topic>Peanuts</topic><topic>pod weight</topic><topic>Population</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative trait loci</topic><topic>seed weight</topic><topic>Single-nucleotide polymorphism</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangurde, Sunil S.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Pandey, Manish K.</creatorcontrib><creatorcontrib>Fountain, Jake C.</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Isleib, Thomas</creatorcontrib><creatorcontrib>Holbrook, C. Corley</creatorcontrib><creatorcontrib>Xavier, Alencar</creatorcontrib><creatorcontrib>Culbreath, Albert K.</creatorcontrib><creatorcontrib>Ozias‐Akins, Peggy</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangurde, Sunil S.</au><au>Wang, Hui</au><au>Yaduru, Shasidhar</au><au>Pandey, Manish K.</au><au>Fountain, Jake C.</au><au>Chu, Ye</au><au>Isleib, Thomas</au><au>Holbrook, C. Corley</au><au>Xavier, Alencar</au><au>Culbreath, Albert K.</au><au>Ozias‐Akins, Peggy</au><au>Varshney, Rajeev K.</au><au>Guo, Baozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2020-06</date><risdate>2020</risdate><volume>18</volume><issue>6</issue><spage>1457</spage><epage>1471</epage><pages>1457-1471</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31808273</pmid><doi>10.1111/pbi.13311</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7119-8649</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-4101-6530</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2020-06, Vol.18 (6), p.1457-1471 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7206994 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest); PubMed Central |
subjects | Arachis hypogaea association mapping candidate genes Chromosomes Dissection Gene mapping Genes Genetic control Genomes linkage mapping nested‐association mapping peanut Peanuts pod weight Population Population genetics Populations Quantitative trait loci seed weight Single-nucleotide polymorphism Weight |
title | Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%E2%80%90association%20mapping%20(NAM)%E2%80%90based%20genetic%20dissection%20uncovers%20candidate%20genes%20for%20seed%20and%20pod%20weights%20in%20peanut%20(Arachis%20hypogaea)&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Gangurde,%20Sunil%20S.&rft.date=2020-06&rft.volume=18&rft.issue=6&rft.spage=1457&rft.epage=1471&rft.pages=1457-1471&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13311&rft_dat=%3Cproquest_pubme%3E2322745591%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406479272&rft_id=info:pmid/31808273&rfr_iscdi=true |