Loading…

Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)

Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two N...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2020-06, Vol.18 (6), p.1457-1471
Main Authors: Gangurde, Sunil S., Wang, Hui, Yaduru, Shasidhar, Pandey, Manish K., Fountain, Jake C., Chu, Ye, Isleib, Thomas, Holbrook, C. Corley, Xavier, Alencar, Culbreath, Albert K., Ozias‐Akins, Peggy, Varshney, Rajeev K., Guo, Baozhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443
cites cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443
container_end_page 1471
container_issue 6
container_start_page 1457
container_title Plant biotechnology journal
container_volume 18
creator Gangurde, Sunil S.
Wang, Hui
Yaduru, Shasidhar
Pandey, Manish K.
Fountain, Jake C.
Chu, Ye
Isleib, Thomas
Holbrook, C. Corley
Xavier, Alencar
Culbreath, Albert K.
Ozias‐Akins, Peggy
Varshney, Rajeev K.
Guo, Baozhu
description Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.
doi_str_mv 10.1111/pbi.13311
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7206994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322745591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</originalsourceid><addsrcrecordid>eNp1kc1uEzEQxy0EoqVw4AWQJS7JIa2_1htfkNKKj0qlcICz5bVnN6429mLvtsqNB-DAM_IkmKREgMRcxvL8_J_x_BF6TskpLXE2NP6Uck7pA3RMhawXtazYw8NZiCP0JOcbQhiVlXyMjjhdkiWr-TH6dg15BPfj63eTc7TejD4GvDHD4EOHZ9er9_NSa0wGhzsIMHqLnc8Z7A6cgo23kDK2JjjvzAg7KuM2JpyhPCr3eIgO34Hv1mPGPuABTJhGPFslY9c-4_V2iJ0BM3-KHrWmz_DsPp-gz29ef7p4t7j68PbyYnW1sEJwurCUUde0SyEZVcRYYhypJK-VUqKRElhrGeVMKLeUbdtYTlppVQNEUSNK8BP0aq87TM0GnIUwJtPrIfmNSVsdjdd_V4Jf6y7e6poRWZoUgdm9QIpfprJBvfHZQt-bAHHKmnHGalFVihb05T_oTZxSKN_TTBApasVqVqj5nrIp5pygPQxDif7lsS4e653HhX3x5_QH8repBTjbA3e-h-3_lfTH88u95E_UCbPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406479272</pqid></control><display><type>article</type><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</creator><creatorcontrib>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</creatorcontrib><description>Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13311</identifier><identifier>PMID: 31808273</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Arachis hypogaea ; association mapping ; candidate genes ; Chromosomes ; Dissection ; Gene mapping ; Genes ; Genetic control ; Genomes ; linkage mapping ; nested‐association mapping ; peanut ; Peanuts ; pod weight ; Population ; Population genetics ; Populations ; Quantitative trait loci ; seed weight ; Single-nucleotide polymorphism ; Weight</subject><ispartof>Plant biotechnology journal, 2020-06, Vol.18 (6), p.1457-1471</ispartof><rights>2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</citedby><cites>FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</cites><orcidid>0000-0001-7119-8649 ; 0000-0002-4562-9131 ; 0000-0002-4101-6530 ; 0000-0002-9079-7126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2406479272/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2406479272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31808273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gangurde, Sunil S.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Pandey, Manish K.</creatorcontrib><creatorcontrib>Fountain, Jake C.</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Isleib, Thomas</creatorcontrib><creatorcontrib>Holbrook, C. Corley</creatorcontrib><creatorcontrib>Xavier, Alencar</creatorcontrib><creatorcontrib>Culbreath, Albert K.</creatorcontrib><creatorcontrib>Ozias‐Akins, Peggy</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</description><subject>Arachis hypogaea</subject><subject>association mapping</subject><subject>candidate genes</subject><subject>Chromosomes</subject><subject>Dissection</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic control</subject><subject>Genomes</subject><subject>linkage mapping</subject><subject>nested‐association mapping</subject><subject>peanut</subject><subject>Peanuts</subject><subject>pod weight</subject><subject>Population</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative trait loci</subject><subject>seed weight</subject><subject>Single-nucleotide polymorphism</subject><subject>Weight</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kc1uEzEQxy0EoqVw4AWQJS7JIa2_1htfkNKKj0qlcICz5bVnN6429mLvtsqNB-DAM_IkmKREgMRcxvL8_J_x_BF6TskpLXE2NP6Uck7pA3RMhawXtazYw8NZiCP0JOcbQhiVlXyMjjhdkiWr-TH6dg15BPfj63eTc7TejD4GvDHD4EOHZ9er9_NSa0wGhzsIMHqLnc8Z7A6cgo23kDK2JjjvzAg7KuM2JpyhPCr3eIgO34Hv1mPGPuABTJhGPFslY9c-4_V2iJ0BM3-KHrWmz_DsPp-gz29ef7p4t7j68PbyYnW1sEJwurCUUde0SyEZVcRYYhypJK-VUqKRElhrGeVMKLeUbdtYTlppVQNEUSNK8BP0aq87TM0GnIUwJtPrIfmNSVsdjdd_V4Jf6y7e6poRWZoUgdm9QIpfprJBvfHZQt-bAHHKmnHGalFVihb05T_oTZxSKN_TTBApasVqVqj5nrIp5pygPQxDif7lsS4e653HhX3x5_QH8repBTjbA3e-h-3_lfTH88u95E_UCbPc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Gangurde, Sunil S.</creator><creator>Wang, Hui</creator><creator>Yaduru, Shasidhar</creator><creator>Pandey, Manish K.</creator><creator>Fountain, Jake C.</creator><creator>Chu, Ye</creator><creator>Isleib, Thomas</creator><creator>Holbrook, C. Corley</creator><creator>Xavier, Alencar</creator><creator>Culbreath, Albert K.</creator><creator>Ozias‐Akins, Peggy</creator><creator>Varshney, Rajeev K.</creator><creator>Guo, Baozhu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7119-8649</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-4101-6530</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></search><sort><creationdate>202006</creationdate><title>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</title><author>Gangurde, Sunil S. ; Wang, Hui ; Yaduru, Shasidhar ; Pandey, Manish K. ; Fountain, Jake C. ; Chu, Ye ; Isleib, Thomas ; Holbrook, C. Corley ; Xavier, Alencar ; Culbreath, Albert K. ; Ozias‐Akins, Peggy ; Varshney, Rajeev K. ; Guo, Baozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arachis hypogaea</topic><topic>association mapping</topic><topic>candidate genes</topic><topic>Chromosomes</topic><topic>Dissection</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic control</topic><topic>Genomes</topic><topic>linkage mapping</topic><topic>nested‐association mapping</topic><topic>peanut</topic><topic>Peanuts</topic><topic>pod weight</topic><topic>Population</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative trait loci</topic><topic>seed weight</topic><topic>Single-nucleotide polymorphism</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangurde, Sunil S.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Pandey, Manish K.</creatorcontrib><creatorcontrib>Fountain, Jake C.</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Isleib, Thomas</creatorcontrib><creatorcontrib>Holbrook, C. Corley</creatorcontrib><creatorcontrib>Xavier, Alencar</creatorcontrib><creatorcontrib>Culbreath, Albert K.</creatorcontrib><creatorcontrib>Ozias‐Akins, Peggy</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangurde, Sunil S.</au><au>Wang, Hui</au><au>Yaduru, Shasidhar</au><au>Pandey, Manish K.</au><au>Fountain, Jake C.</au><au>Chu, Ye</au><au>Isleib, Thomas</au><au>Holbrook, C. Corley</au><au>Xavier, Alencar</au><au>Culbreath, Albert K.</au><au>Ozias‐Akins, Peggy</au><au>Varshney, Rajeev K.</au><au>Guo, Baozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2020-06</date><risdate>2020</risdate><volume>18</volume><issue>6</issue><spage>1457</spage><epage>1471</epage><pages>1457-1471</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31808273</pmid><doi>10.1111/pbi.13311</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7119-8649</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-4101-6530</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2020-06, Vol.18 (6), p.1457-1471
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7206994
source Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest); PubMed Central
subjects Arachis hypogaea
association mapping
candidate genes
Chromosomes
Dissection
Gene mapping
Genes
Genetic control
Genomes
linkage mapping
nested‐association mapping
peanut
Peanuts
pod weight
Population
Population genetics
Populations
Quantitative trait loci
seed weight
Single-nucleotide polymorphism
Weight
title Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%E2%80%90association%20mapping%20(NAM)%E2%80%90based%20genetic%20dissection%20uncovers%20candidate%20genes%20for%20seed%20and%20pod%20weights%20in%20peanut%20(Arachis%20hypogaea)&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Gangurde,%20Sunil%20S.&rft.date=2020-06&rft.volume=18&rft.issue=6&rft.spage=1457&rft.epage=1471&rft.pages=1457-1471&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13311&rft_dat=%3Cproquest_pubme%3E2322745591%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4431-c121dbf8462190ac0ad056379994b66e2fc213249d86ffbc30f6c9be091a44443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406479272&rft_id=info:pmid/31808273&rfr_iscdi=true