Loading…
A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6
Using broad-spectrum antibiotics for microbial infection may cause flora disequilibrium, drug-resistance, etc., seriously threatening human health. Here, we design a human defensin-6 mimic peptide (HDMP) that inhibits bacterial invasion in vivo through mimicking the mechanisms of human defensin-6 wi...
Saved in:
Published in: | Science advances 2020-05, Vol.6 (19), p.eaaz4767 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using broad-spectrum antibiotics for microbial infection may cause flora disequilibrium, drug-resistance, etc., seriously threatening human health. Here, we design a human defensin-6 mimic peptide (HDMP) that inhibits bacterial invasion in vivo through mimicking the mechanisms of human defensin-6 with high efficiency and precision. The HDMP with ligand and self-assembling peptide sequence recognizes bacteria through ligand-receptor interactions and subsequently traps bacteria by an in situ adaptive self-assembly process and resulting nanofibrous networks; these trapped bacteria are unable to invade host cells. In four animal infection models, the infection rate was markedly decreased. Notably, administration of HDMP (5 mg/kg) nanoparticles increased the survival rate of mice with methicillin-resistant
bacteremia by as much as 100%, even more than that of vancomycin treatment (5 mg/kg, 83.3%)-treated group, the golden standard of antibiotics. This biomimetic peptide shows great potential as a precise and highly efficient antimicrobial agent. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aaz4767 |