Loading…

An optimisation-based iterative approach for speckle tracking echocardiography

Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly availabl...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2020-06, Vol.58 (6), p.1309-1323
Main Authors: Azarmehr, Neda, Ye, Xujiong, Howes, Joseph D., Docking, Benjamin, Howard, James P., Francis, Darrel P., Zolgharni, Massoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly available synthetic echocardiographic dataset with known ground-truth from several major vendors and for healthy/ischaemic cases. The results were compared with the results from the classic (standard) two-dimensional block matching. The proposed method presented an average displacement error of 0.57 pixels, while classic block matching provided an average error of 1.15 pixels. When estimating the segmental/regional longitudinal strain in healthy cases, the proposed method, with an average of 0.32 ± 0.53, outperformed the classic counterpart, with an average of 3.43 ± 2.84. A similar superior performance was observed in ischaemic cases. This method does not require any additional ad hoc filtering process. Therefore, it can potentially help to reduce the variability in the strain measurements caused by various post-processing techniques applied by different implementations of the speckle tracking. Graphical Abstract Standard block matching versus proposed iterative block matching approach
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-020-02142-8