Loading…

Pancreatic cancer triggers diabetes through TGF-β-mediated selective depletion of islet β-cells

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfo...

Full description

Saved in:
Bibliographic Details
Published in:Life science alliance 2020-06, Vol.3 (6), p.e201900573
Main Authors: Parajuli, Parash, Nguyen, Thien Ly, Prunier, Céline, Razzaque, Mohammed S, Xu, Keli, Atfi, Azeddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of Kras -driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of β-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-β) signaling during PDAC progression caused erosion of β-cell mass through apoptosis. Suppressing TGF-β signaling, either pharmacologically through TGF-β immunoneutralization or genetically through deletion of or β ( ), afforded substantial protection against PDAC-driven β-cell depletion. From a translational perspective, both activation of TGF-β signaling and depletion of β-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.
ISSN:2575-1077
2575-1077
DOI:10.26508/lsa.201900573