Loading…

A Comparative Analysis of Implants Presenting Different Diameters: Extra-Narrow, Narrow and Conventional

This study aimed at performing a comparative analysis of the fracture resistance of implants, evaluating extra-narrow, narrow, and regular implants. Four groups containing 15 implants each were evaluated. Group 1 (G1): single-piece extra-narrow implants; Group 2 (G2): single-piece narrow implants; G...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-04, Vol.13 (8), p.1888
Main Authors: Tuzzolo Neto, Henrique, Tuzita, Alessandra Sayuri, Gehrke, Sérgio Alexandre, de Vasconcellos Moura, Renata, Zaffalon Casati, Márcio, Mikail Melo Mesquita, Alfredo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed at performing a comparative analysis of the fracture resistance of implants, evaluating extra-narrow, narrow, and regular implants. Four groups containing 15 implants each were evaluated. Group 1 (G1): single-piece extra-narrow implants; Group 2 (G2): single-piece narrow implants; Group 3 (G3): Morse taper narrow implants with solid abutments; Group 4 (G4): Morse taper conventional implants with solid abutments. The implants were tested using a universal testing machine for their maximum force limit and their maximum bending moment. After obtaining the data, the Shapiro-Wilk, ANOVA, and Tukey ( < 0.05) statistical tests were applied. Samples from all the groups were analyzed by scanning electron microscopy and Groups 3 and 4 were analyzed by profilometry. The means and the standard deviation values for the maximum force limit (N) and the maximum bending moment (Nmm) were respectively: G1:134.29 N (10.27); G2:300.61 N (24.26); G3:360.64 N (23.34); G4:419.10 N (18.87); G1:1612.02 Nmm (100.6); G2:2945 Nmm (237.97); G3:3530.38 Nmm (228.75); G4:4096.7 Nmm (182.73). The groups behaved statistically different from each other, showing that the smallest diameter implants provided less fracture resistance, both in the tensile strength tests and in the maximum bending moment between all groups. Furthermore, single-piece implants, with 2.5 mm and 3.0 mm diameters, deformed in the implant body region area, rather than in the abutment region.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13081888