Loading…
Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma
A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected...
Saved in:
Published in: | Oncogene 2020-05, Vol.39 (20), p.4061-4076 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203 |
---|---|
cites | cdi_FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203 |
container_end_page | 4076 |
container_issue | 20 |
container_start_page | 4061 |
container_title | Oncogene |
container_volume | 39 |
creator | Yang, Xintao Hu, Feng Liu, Jessica Aijia Yu, Shan Cheung, May Pui Lai Liu, Xuelai Ng, Irene Oi-Lin Guan, Xin-Yuan Wong, Kelvin K. W. Sharma, Rakesh Lung, Hong Lok Jiao, Yufei Lee, Leo Tsz On Cheung, Martin |
description | A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether
DLC1
is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1–FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients’ samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation. |
doi_str_mv | 10.1038/s41388-020-1274-8 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7220869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623825796</galeid><sourcerecordid>A623825796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEotvCD-CCLHHhkuKPOLYvSNVCAbGlHEDiZnm9TtZVYm_tZCkn_joTUlqKAPtgaeaZ157xWxRPCD4mmMkXuSJMyhJTXBIqqlLeKxakEnXJuaruFwusOC4VZfSgOMz5AmMsFKYPiwNGKakoxovi-4fRds4k9Gq1JMhduTRkFIONrQveomYMdvAxoGGb4thukck5Wm9-xr76YYtOz7-8J6iJCdkYdy5Bau-Qgar9TMUGnZ19VKC9Sy7nKeQD6l1nQuzNo-JBY7rsHl-fR8Xn09eflm_L1fmbd8uTVWl5zYdyQ9VaCiK4EByzynBHFJeWCLxR2BKKLROSrNeNbCpYRklmGDE1E1XNIc2Oipez7m5c925jXRiS6fQu-d6kbzoar-9mgt_qNu61oBTLWoHA82uBFC9Hlwfd-2xdB224OGZNmYSJSlJTQJ_9gV7EMQVoT1P4HcEJlvL_FAY5AV96S7Wmc9qHJsLr7HS1PoGrJOVC1UAd_4WCvXG9tzG4xkP8TgGZC2yKOSfX3EyCYD15S8_e0uAtPXlLTw9--vsIbyp-mQkAOgMZUqF16bajf6v-AH6X1yc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402387274</pqid></control><display><type>article</type><title>Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma</title><source>Nexis UK</source><source>Springer Link</source><creator>Yang, Xintao ; Hu, Feng ; Liu, Jessica Aijia ; Yu, Shan ; Cheung, May Pui Lai ; Liu, Xuelai ; Ng, Irene Oi-Lin ; Guan, Xin-Yuan ; Wong, Kelvin K. W. ; Sharma, Rakesh ; Lung, Hong Lok ; Jiao, Yufei ; Lee, Leo Tsz On ; Cheung, Martin</creator><creatorcontrib>Yang, Xintao ; Hu, Feng ; Liu, Jessica Aijia ; Yu, Shan ; Cheung, May Pui Lai ; Liu, Xuelai ; Ng, Irene Oi-Lin ; Guan, Xin-Yuan ; Wong, Kelvin K. W. ; Sharma, Rakesh ; Lung, Hong Lok ; Jiao, Yufei ; Lee, Leo Tsz On ; Cheung, Martin</creatorcontrib><description>A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether
DLC1
is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1–FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients’ samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-020-1274-8</identifier><identifier>PMID: 32214200</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13/106 ; 13/109 ; 14/33 ; 38/39 ; 42/35 ; 42/41 ; 631/67/1813/1634 ; 631/67/395 ; 64/60 ; Apoptosis ; Cell Biology ; Cell Line, Tumor ; Cytoplasm ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; Gelatinase B ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; Gene regulation ; GTPase-activating protein ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Guanosine triphosphatases ; Human Genetics ; Humans ; Internal Medicine ; Liver ; Liver cancer ; Mass spectroscopy ; Matrix Metalloproteinase 9 - biosynthesis ; Matrix Metalloproteinase 9 - genetics ; Medicine ; Medicine & Public Health ; Melanoma ; Melanoma - genetics ; Melanoma - metabolism ; Melanoma - pathology ; Metastases ; Metastasis ; Nuclei ; Oncology ; Proteins ; Ribonucleic acid ; RNA ; Tumor suppressor genes ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Oncogene, 2020-05, Vol.39 (20), p.4061-4076</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203</citedby><cites>FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203</cites><orcidid>0000-0002-3471-8534 ; 0000-0001-7532-2029 ; 0000-0002-4485-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32214200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xintao</creatorcontrib><creatorcontrib>Hu, Feng</creatorcontrib><creatorcontrib>Liu, Jessica Aijia</creatorcontrib><creatorcontrib>Yu, Shan</creatorcontrib><creatorcontrib>Cheung, May Pui Lai</creatorcontrib><creatorcontrib>Liu, Xuelai</creatorcontrib><creatorcontrib>Ng, Irene Oi-Lin</creatorcontrib><creatorcontrib>Guan, Xin-Yuan</creatorcontrib><creatorcontrib>Wong, Kelvin K. W.</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Lung, Hong Lok</creatorcontrib><creatorcontrib>Jiao, Yufei</creatorcontrib><creatorcontrib>Lee, Leo Tsz On</creatorcontrib><creatorcontrib>Cheung, Martin</creatorcontrib><title>Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether
DLC1
is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1–FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients’ samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.</description><subject>101/58</subject><subject>13/106</subject><subject>13/109</subject><subject>14/33</subject><subject>38/39</subject><subject>42/35</subject><subject>42/41</subject><subject>631/67/1813/1634</subject><subject>631/67/395</subject><subject>64/60</subject><subject>Apoptosis</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cytoplasm</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gelatinase B</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>GTPase-activating protein</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Mass spectroscopy</subject><subject>Matrix Metalloproteinase 9 - biosynthesis</subject><subject>Matrix Metalloproteinase 9 - genetics</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanoma</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Melanoma - pathology</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Nuclei</subject><subject>Oncology</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEotvCD-CCLHHhkuKPOLYvSNVCAbGlHEDiZnm9TtZVYm_tZCkn_joTUlqKAPtgaeaZ157xWxRPCD4mmMkXuSJMyhJTXBIqqlLeKxakEnXJuaruFwusOC4VZfSgOMz5AmMsFKYPiwNGKakoxovi-4fRds4k9Gq1JMhduTRkFIONrQveomYMdvAxoGGb4thukck5Wm9-xr76YYtOz7-8J6iJCdkYdy5Bau-Qgar9TMUGnZ19VKC9Sy7nKeQD6l1nQuzNo-JBY7rsHl-fR8Xn09eflm_L1fmbd8uTVWl5zYdyQ9VaCiK4EByzynBHFJeWCLxR2BKKLROSrNeNbCpYRklmGDE1E1XNIc2Oipez7m5c925jXRiS6fQu-d6kbzoar-9mgt_qNu61oBTLWoHA82uBFC9Hlwfd-2xdB224OGZNmYSJSlJTQJ_9gV7EMQVoT1P4HcEJlvL_FAY5AV96S7Wmc9qHJsLr7HS1PoGrJOVC1UAd_4WCvXG9tzG4xkP8TgGZC2yKOSfX3EyCYD15S8_e0uAtPXlLTw9--vsIbyp-mQkAOgMZUqF16bajf6v-AH6X1yc</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Yang, Xintao</creator><creator>Hu, Feng</creator><creator>Liu, Jessica Aijia</creator><creator>Yu, Shan</creator><creator>Cheung, May Pui Lai</creator><creator>Liu, Xuelai</creator><creator>Ng, Irene Oi-Lin</creator><creator>Guan, Xin-Yuan</creator><creator>Wong, Kelvin K. W.</creator><creator>Sharma, Rakesh</creator><creator>Lung, Hong Lok</creator><creator>Jiao, Yufei</creator><creator>Lee, Leo Tsz On</creator><creator>Cheung, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3471-8534</orcidid><orcidid>https://orcid.org/0000-0001-7532-2029</orcidid><orcidid>https://orcid.org/0000-0002-4485-6017</orcidid></search><sort><creationdate>20200514</creationdate><title>Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma</title><author>Yang, Xintao ; Hu, Feng ; Liu, Jessica Aijia ; Yu, Shan ; Cheung, May Pui Lai ; Liu, Xuelai ; Ng, Irene Oi-Lin ; Guan, Xin-Yuan ; Wong, Kelvin K. W. ; Sharma, Rakesh ; Lung, Hong Lok ; Jiao, Yufei ; Lee, Leo Tsz On ; Cheung, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>13/106</topic><topic>13/109</topic><topic>14/33</topic><topic>38/39</topic><topic>42/35</topic><topic>42/41</topic><topic>631/67/1813/1634</topic><topic>631/67/395</topic><topic>64/60</topic><topic>Apoptosis</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cytoplasm</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gelatinase B</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>GTPase-activating protein</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Mass spectroscopy</topic><topic>Matrix Metalloproteinase 9 - biosynthesis</topic><topic>Matrix Metalloproteinase 9 - genetics</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanoma</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Melanoma - pathology</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Nuclei</topic><topic>Oncology</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xintao</creatorcontrib><creatorcontrib>Hu, Feng</creatorcontrib><creatorcontrib>Liu, Jessica Aijia</creatorcontrib><creatorcontrib>Yu, Shan</creatorcontrib><creatorcontrib>Cheung, May Pui Lai</creatorcontrib><creatorcontrib>Liu, Xuelai</creatorcontrib><creatorcontrib>Ng, Irene Oi-Lin</creatorcontrib><creatorcontrib>Guan, Xin-Yuan</creatorcontrib><creatorcontrib>Wong, Kelvin K. W.</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Lung, Hong Lok</creatorcontrib><creatorcontrib>Jiao, Yufei</creatorcontrib><creatorcontrib>Lee, Leo Tsz On</creatorcontrib><creatorcontrib>Cheung, Martin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xintao</au><au>Hu, Feng</au><au>Liu, Jessica Aijia</au><au>Yu, Shan</au><au>Cheung, May Pui Lai</au><au>Liu, Xuelai</au><au>Ng, Irene Oi-Lin</au><au>Guan, Xin-Yuan</au><au>Wong, Kelvin K. W.</au><au>Sharma, Rakesh</au><au>Lung, Hong Lok</au><au>Jiao, Yufei</au><au>Lee, Leo Tsz On</au><au>Cheung, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>39</volume><issue>20</issue><spage>4061</spage><epage>4076</epage><pages>4061-4076</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether
DLC1
is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1–FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients’ samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32214200</pmid><doi>10.1038/s41388-020-1274-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3471-8534</orcidid><orcidid>https://orcid.org/0000-0001-7532-2029</orcidid><orcidid>https://orcid.org/0000-0002-4485-6017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2020-05, Vol.39 (20), p.4061-4076 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7220869 |
source | Nexis UK; Springer Link |
subjects | 101/58 13/106 13/109 14/33 38/39 42/35 42/41 631/67/1813/1634 631/67/395 64/60 Apoptosis Cell Biology Cell Line, Tumor Cytoplasm Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism Gelatinase B Gene Expression Regulation, Enzymologic Gene Expression Regulation, Neoplastic Gene regulation GTPase-activating protein GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Guanosine triphosphatases Human Genetics Humans Internal Medicine Liver Liver cancer Mass spectroscopy Matrix Metalloproteinase 9 - biosynthesis Matrix Metalloproteinase 9 - genetics Medicine Medicine & Public Health Melanoma Melanoma - genetics Melanoma - metabolism Melanoma - pathology Metastases Metastasis Nuclei Oncology Proteins Ribonucleic acid RNA Tumor suppressor genes Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20DLC1%20exerts%20oncogenic%20function%20through%20association%20with%20FOXK1%20for%20cooperative%20activation%20of%20MMP9%20expression%20in%20melanoma&rft.jtitle=Oncogene&rft.au=Yang,%20Xintao&rft.date=2020-05-14&rft.volume=39&rft.issue=20&rft.spage=4061&rft.epage=4076&rft.pages=4061-4076&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-020-1274-8&rft_dat=%3Cgale_pubme%3EA623825796%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c565t-d29b87175775034a5e1958c170d90c120c3781bbf8f4444a983a31a6374651203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402387274&rft_id=info:pmid/32214200&rft_galeid=A623825796&rfr_iscdi=true |