Loading…
Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds
Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluo...
Saved in:
Published in: | Science advances 2020-05, Vol.6 (20), p.eaax0317-eaax0317 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373 |
container_end_page | eaax0317 |
container_issue | 20 |
container_start_page | eaax0317 |
container_title | Science advances |
container_volume | 6 |
creator | Tan, Steven J Chang, Alice C Anderson, Sarah M Miller, Cayla M Prahl, Louis S Odde, David J Dunn, Alexander R |
description | Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level. |
doi_str_mv | 10.1126/sciadv.aax0317 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406305709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</originalsourceid><addsrcrecordid>eNpVkUtLxDAUhYMoKqNbl9Klm455NE2zEWTwBYIg6jbcSW410ibatMPMv7c6o4yrG7hfTs7JIeSE0SljvDxP1oNbTAGWVDC1Qw65UDLnsqh2t84H5Dild0opK8pSMr1PDgQvCipFcUheHvF1aKD3MWQQXOZWAVpvUxbrrI6dxazvIKTWp_SD9JkPzi-8G6DJLDZN3kLf-WUG7g1_kHkMLh2RvRqahMebOSHP11dPs9v8_uHmbnZ5n1uhaZ9XTM9LxmQpraxQc-tUiZoqW1knQAJFrQoKVnIuBM41jLZBokbEEmqhxIRcrHU_hnmLzmIY7Tbmo_MtdCsTwZv_m-DfzGtcGMV5pYpqFDjbCHTxc8DUmzHqdy4IGIdkeEFLQaWiekSna9R2MaUO679nGDXffZh1H2bTx3jhdNvcH_77--IL4jWKrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406305709</pqid></control><display><type>article</type><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</creator><creatorcontrib>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</creatorcontrib><description>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aax0317</identifier><identifier>PMID: 32440534</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biophysics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-05, Vol.6 (20), p.eaax0317-eaax0317</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</citedby><cites>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</cites><orcidid>0000-0001-7731-2799 ; 0000-0001-6096-4600 ; 0000-0003-1807-5222 ; 0000-0003-2537-0879 ; 0000-0001-8382-0255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32440534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Steven J</creatorcontrib><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Anderson, Sarah M</creatorcontrib><creatorcontrib>Miller, Cayla M</creatorcontrib><creatorcontrib>Prahl, Louis S</creatorcontrib><creatorcontrib>Odde, David J</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</description><subject>Biophysics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLxDAUhYMoKqNbl9Klm455NE2zEWTwBYIg6jbcSW410ibatMPMv7c6o4yrG7hfTs7JIeSE0SljvDxP1oNbTAGWVDC1Qw65UDLnsqh2t84H5Dild0opK8pSMr1PDgQvCipFcUheHvF1aKD3MWQQXOZWAVpvUxbrrI6dxazvIKTWp_SD9JkPzi-8G6DJLDZN3kLf-WUG7g1_kHkMLh2RvRqahMebOSHP11dPs9v8_uHmbnZ5n1uhaZ9XTM9LxmQpraxQc-tUiZoqW1knQAJFrQoKVnIuBM41jLZBokbEEmqhxIRcrHU_hnmLzmIY7Tbmo_MtdCsTwZv_m-DfzGtcGMV5pYpqFDjbCHTxc8DUmzHqdy4IGIdkeEFLQaWiekSna9R2MaUO679nGDXffZh1H2bTx3jhdNvcH_77--IL4jWKrA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Tan, Steven J</creator><creator>Chang, Alice C</creator><creator>Anderson, Sarah M</creator><creator>Miller, Cayla M</creator><creator>Prahl, Louis S</creator><creator>Odde, David J</creator><creator>Dunn, Alexander R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7731-2799</orcidid><orcidid>https://orcid.org/0000-0001-6096-4600</orcidid><orcidid>https://orcid.org/0000-0003-1807-5222</orcidid><orcidid>https://orcid.org/0000-0003-2537-0879</orcidid><orcidid>https://orcid.org/0000-0001-8382-0255</orcidid></search><sort><creationdate>20200501</creationdate><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><author>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biophysics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Steven J</creatorcontrib><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Anderson, Sarah M</creatorcontrib><creatorcontrib>Miller, Cayla M</creatorcontrib><creatorcontrib>Prahl, Louis S</creatorcontrib><creatorcontrib>Odde, David J</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Steven J</au><au>Chang, Alice C</au><au>Anderson, Sarah M</au><au>Miller, Cayla M</au><au>Prahl, Louis S</au><au>Odde, David J</au><au>Dunn, Alexander R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>6</volume><issue>20</issue><spage>eaax0317</spage><epage>eaax0317</epage><pages>eaax0317-eaax0317</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32440534</pmid><doi>10.1126/sciadv.aax0317</doi><orcidid>https://orcid.org/0000-0001-7731-2799</orcidid><orcidid>https://orcid.org/0000-0001-6096-4600</orcidid><orcidid>https://orcid.org/0000-0003-1807-5222</orcidid><orcidid>https://orcid.org/0000-0003-2537-0879</orcidid><orcidid>https://orcid.org/0000-0001-8382-0255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-05, Vol.6 (20), p.eaax0317-eaax0317 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228748 |
source | American Association for the Advancement of Science; PMC (PubMed Central) |
subjects | Biophysics SciAdv r-articles |
title | Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20and%20dynamics%20of%20force%20transmission%20at%20individual%20cell-matrix%20adhesion%20bonds&rft.jtitle=Science%20advances&rft.au=Tan,%20Steven%20J&rft.date=2020-05-01&rft.volume=6&rft.issue=20&rft.spage=eaax0317&rft.epage=eaax0317&rft.pages=eaax0317-eaax0317&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aax0317&rft_dat=%3Cproquest_pubme%3E2406305709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406305709&rft_id=info:pmid/32440534&rfr_iscdi=true |