Loading…

Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds

Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluo...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-05, Vol.6 (20), p.eaax0317-eaax0317
Main Authors: Tan, Steven J, Chang, Alice C, Anderson, Sarah M, Miller, Cayla M, Prahl, Louis S, Odde, David J, Dunn, Alexander R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373
cites cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373
container_end_page eaax0317
container_issue 20
container_start_page eaax0317
container_title Science advances
container_volume 6
creator Tan, Steven J
Chang, Alice C
Anderson, Sarah M
Miller, Cayla M
Prahl, Louis S
Odde, David J
Dunn, Alexander R
description Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.
doi_str_mv 10.1126/sciadv.aax0317
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406305709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</originalsourceid><addsrcrecordid>eNpVkUtLxDAUhYMoKqNbl9Klm455NE2zEWTwBYIg6jbcSW410ibatMPMv7c6o4yrG7hfTs7JIeSE0SljvDxP1oNbTAGWVDC1Qw65UDLnsqh2t84H5Dild0opK8pSMr1PDgQvCipFcUheHvF1aKD3MWQQXOZWAVpvUxbrrI6dxazvIKTWp_SD9JkPzi-8G6DJLDZN3kLf-WUG7g1_kHkMLh2RvRqahMebOSHP11dPs9v8_uHmbnZ5n1uhaZ9XTM9LxmQpraxQc-tUiZoqW1knQAJFrQoKVnIuBM41jLZBokbEEmqhxIRcrHU_hnmLzmIY7Tbmo_MtdCsTwZv_m-DfzGtcGMV5pYpqFDjbCHTxc8DUmzHqdy4IGIdkeEFLQaWiekSna9R2MaUO679nGDXffZh1H2bTx3jhdNvcH_77--IL4jWKrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406305709</pqid></control><display><type>article</type><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</creator><creatorcontrib>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</creatorcontrib><description>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aax0317</identifier><identifier>PMID: 32440534</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biophysics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-05, Vol.6 (20), p.eaax0317-eaax0317</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</citedby><cites>FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</cites><orcidid>0000-0001-7731-2799 ; 0000-0001-6096-4600 ; 0000-0003-1807-5222 ; 0000-0003-2537-0879 ; 0000-0001-8382-0255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32440534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Steven J</creatorcontrib><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Anderson, Sarah M</creatorcontrib><creatorcontrib>Miller, Cayla M</creatorcontrib><creatorcontrib>Prahl, Louis S</creatorcontrib><creatorcontrib>Odde, David J</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</description><subject>Biophysics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLxDAUhYMoKqNbl9Klm455NE2zEWTwBYIg6jbcSW410ibatMPMv7c6o4yrG7hfTs7JIeSE0SljvDxP1oNbTAGWVDC1Qw65UDLnsqh2t84H5Dild0opK8pSMr1PDgQvCipFcUheHvF1aKD3MWQQXOZWAVpvUxbrrI6dxazvIKTWp_SD9JkPzi-8G6DJLDZN3kLf-WUG7g1_kHkMLh2RvRqahMebOSHP11dPs9v8_uHmbnZ5n1uhaZ9XTM9LxmQpraxQc-tUiZoqW1knQAJFrQoKVnIuBM41jLZBokbEEmqhxIRcrHU_hnmLzmIY7Tbmo_MtdCsTwZv_m-DfzGtcGMV5pYpqFDjbCHTxc8DUmzHqdy4IGIdkeEFLQaWiekSna9R2MaUO679nGDXffZh1H2bTx3jhdNvcH_77--IL4jWKrA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Tan, Steven J</creator><creator>Chang, Alice C</creator><creator>Anderson, Sarah M</creator><creator>Miller, Cayla M</creator><creator>Prahl, Louis S</creator><creator>Odde, David J</creator><creator>Dunn, Alexander R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7731-2799</orcidid><orcidid>https://orcid.org/0000-0001-6096-4600</orcidid><orcidid>https://orcid.org/0000-0003-1807-5222</orcidid><orcidid>https://orcid.org/0000-0003-2537-0879</orcidid><orcidid>https://orcid.org/0000-0001-8382-0255</orcidid></search><sort><creationdate>20200501</creationdate><title>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</title><author>Tan, Steven J ; Chang, Alice C ; Anderson, Sarah M ; Miller, Cayla M ; Prahl, Louis S ; Odde, David J ; Dunn, Alexander R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biophysics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Steven J</creatorcontrib><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Anderson, Sarah M</creatorcontrib><creatorcontrib>Miller, Cayla M</creatorcontrib><creatorcontrib>Prahl, Louis S</creatorcontrib><creatorcontrib>Odde, David J</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Steven J</au><au>Chang, Alice C</au><au>Anderson, Sarah M</au><au>Miller, Cayla M</au><au>Prahl, Louis S</au><au>Odde, David J</au><au>Dunn, Alexander R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>6</volume><issue>20</issue><spage>eaax0317</spage><epage>eaax0317</epage><pages>eaax0317-eaax0317</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32440534</pmid><doi>10.1126/sciadv.aax0317</doi><orcidid>https://orcid.org/0000-0001-7731-2799</orcidid><orcidid>https://orcid.org/0000-0001-6096-4600</orcidid><orcidid>https://orcid.org/0000-0003-1807-5222</orcidid><orcidid>https://orcid.org/0000-0003-2537-0879</orcidid><orcidid>https://orcid.org/0000-0001-8382-0255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-05, Vol.6 (20), p.eaax0317-eaax0317
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228748
source American Association for the Advancement of Science; PMC (PubMed Central)
subjects Biophysics
SciAdv r-articles
title Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20and%20dynamics%20of%20force%20transmission%20at%20individual%20cell-matrix%20adhesion%20bonds&rft.jtitle=Science%20advances&rft.au=Tan,%20Steven%20J&rft.date=2020-05-01&rft.volume=6&rft.issue=20&rft.spage=eaax0317&rft.epage=eaax0317&rft.pages=eaax0317-eaax0317&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aax0317&rft_dat=%3Cproquest_pubme%3E2406305709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-819b611565c58e92cd76e907c8cd3a5a0e9740ac52233eb9a440a5e9eee6af373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406305709&rft_id=info:pmid/32440534&rfr_iscdi=true