Loading…

Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors

Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine th...

Full description

Saved in:
Bibliographic Details
Published in:Brain Structure and Function 2020-03, Vol.225 (2), p.785-803
Main Authors: Tillage, Rachel P., Sciolino, Natale R., Plummer, Nicholas W., Lustberg, Daniel, Liles, L. Cameron, Hsiang, Madeline, Powell, Jeanne M., Smith, Kathleen G., Jensen, Patricia, Weinshenker, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943
cites cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943
container_end_page 803
container_issue 2
container_start_page 785
container_title Brain Structure and Function
container_volume 225
creator Tillage, Rachel P.
Sciolino, Natale R.
Plummer, Nicholas W.
Lustberg, Daniel
Liles, L. Cameron
Hsiang, Madeline
Powell, Jeanne M.
Smith, Kathleen G.
Jensen, Patricia
Weinshenker, David
description Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons ( Gal cKO–Dbh ). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of Gal cKO–Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. Gal cKO–Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, Gal cKO–Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.
doi_str_mv 10.1007/s00429-020-02035-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366167521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFSWlSdP-gR6KIGe3smTJq0sghPQDAr20ZzGWx14Fr7QZ2Qu554dH20236aUIoRnmvTcPPcY-1OJTLUT7OQvRSFsJKfZX6ap5xc7qlVGVNKY-OdZanbK3Od8Joe2qtm_YqZLCaKnNGXu8mcImRJhDijwNfIQJYog8P8R5jTlkXpqYCHrCiDQGzyMulGLmhP3iMR8pexZO6GfeEZQGCCFziD3fUtqkuUDBz2GH3KdtiCPvcA27kCi_Y68HmDK-f37P2a8vNz-vv1W3P75-v766rbxuxFwZ5X0DbWdEPzSyA23L8cq2K7CDlF5L0XXSgxfYDB30LahGGW-h1sZY26hzdnnQ3S7dBnuPcSaY3JbCBujBJQju30kMazemnWulWrVGFIGLZwFK9wvm2d2lhWLx7KQqf25aLeuCkgeUp5Qz4XDcUAu3T84dknMlNfc7Obf39vGltyPlT1QFoA6AXEZxRPq7-z-yT4UHqBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366167521</pqid></control><display><type>article</type><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><source>Springer Nature</source><creator>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</creator><creatorcontrib>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</creatorcontrib><description>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons ( Gal cKO–Dbh ). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of Gal cKO–Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. Gal cKO–Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, Gal cKO–Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-020-02035-4</identifier><identifier>PMID: 32065256</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Psychological - physiology ; Adrenergic Neurons - metabolism ; Animals ; Anxiety ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - metabolism ; Cell Biology ; Coping ; Female ; Galanin ; Galanin - genetics ; Galanin - metabolism ; Gene Knock-In Techniques ; Hippocampus - metabolism ; Hypothalamus ; Latency ; Male ; Mental disorders ; Mesencephalon ; Metabolites ; Mice, Knockout ; Motor skill learning ; Neurology ; Neurons ; Neurosciences ; Norepinephrine ; Original Article ; Pons ; Pons - metabolism ; Prefrontal cortex ; Prefrontal Cortex - metabolism</subject><ispartof>Brain Structure and Function, 2020-03, Vol.225 (2), p.785-803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Brain Structure and Function is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</citedby><cites>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32065256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tillage, Rachel P.</creatorcontrib><creatorcontrib>Sciolino, Natale R.</creatorcontrib><creatorcontrib>Plummer, Nicholas W.</creatorcontrib><creatorcontrib>Lustberg, Daniel</creatorcontrib><creatorcontrib>Liles, L. Cameron</creatorcontrib><creatorcontrib>Hsiang, Madeline</creatorcontrib><creatorcontrib>Powell, Jeanne M.</creatorcontrib><creatorcontrib>Smith, Kathleen G.</creatorcontrib><creatorcontrib>Jensen, Patricia</creatorcontrib><creatorcontrib>Weinshenker, David</creatorcontrib><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons ( Gal cKO–Dbh ). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of Gal cKO–Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. Gal cKO–Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, Gal cKO–Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</description><subject>Adaptation, Psychological - physiology</subject><subject>Adrenergic Neurons - metabolism</subject><subject>Animals</subject><subject>Anxiety</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cell Biology</subject><subject>Coping</subject><subject>Female</subject><subject>Galanin</subject><subject>Galanin - genetics</subject><subject>Galanin - metabolism</subject><subject>Gene Knock-In Techniques</subject><subject>Hippocampus - metabolism</subject><subject>Hypothalamus</subject><subject>Latency</subject><subject>Male</subject><subject>Mental disorders</subject><subject>Mesencephalon</subject><subject>Metabolites</subject><subject>Mice, Knockout</subject><subject>Motor skill learning</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Norepinephrine</subject><subject>Original Article</subject><subject>Pons</subject><subject>Pons - metabolism</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFSWlSdP-gR6KIGe3smTJq0sghPQDAr20ZzGWx14Fr7QZ2Qu554dH20236aUIoRnmvTcPPcY-1OJTLUT7OQvRSFsJKfZX6ap5xc7qlVGVNKY-OdZanbK3Od8Joe2qtm_YqZLCaKnNGXu8mcImRJhDijwNfIQJYog8P8R5jTlkXpqYCHrCiDQGzyMulGLmhP3iMR8pexZO6GfeEZQGCCFziD3fUtqkuUDBz2GH3KdtiCPvcA27kCi_Y68HmDK-f37P2a8vNz-vv1W3P75-v766rbxuxFwZ5X0DbWdEPzSyA23L8cq2K7CDlF5L0XXSgxfYDB30LahGGW-h1sZY26hzdnnQ3S7dBnuPcSaY3JbCBujBJQju30kMazemnWulWrVGFIGLZwFK9wvm2d2lhWLx7KQqf25aLeuCkgeUp5Qz4XDcUAu3T84dknMlNfc7Obf39vGltyPlT1QFoA6AXEZxRPq7-z-yT4UHqBM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tillage, Rachel P.</creator><creator>Sciolino, Natale R.</creator><creator>Plummer, Nicholas W.</creator><creator>Lustberg, Daniel</creator><creator>Liles, L. Cameron</creator><creator>Hsiang, Madeline</creator><creator>Powell, Jeanne M.</creator><creator>Smith, Kathleen G.</creator><creator>Jensen, Patricia</creator><creator>Weinshenker, David</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><author>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Psychological - physiology</topic><topic>Adrenergic Neurons - metabolism</topic><topic>Animals</topic><topic>Anxiety</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cell Biology</topic><topic>Coping</topic><topic>Female</topic><topic>Galanin</topic><topic>Galanin - genetics</topic><topic>Galanin - metabolism</topic><topic>Gene Knock-In Techniques</topic><topic>Hippocampus - metabolism</topic><topic>Hypothalamus</topic><topic>Latency</topic><topic>Male</topic><topic>Mental disorders</topic><topic>Mesencephalon</topic><topic>Metabolites</topic><topic>Mice, Knockout</topic><topic>Motor skill learning</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Norepinephrine</topic><topic>Original Article</topic><topic>Pons</topic><topic>Pons - metabolism</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tillage, Rachel P.</creatorcontrib><creatorcontrib>Sciolino, Natale R.</creatorcontrib><creatorcontrib>Plummer, Nicholas W.</creatorcontrib><creatorcontrib>Lustberg, Daniel</creatorcontrib><creatorcontrib>Liles, L. Cameron</creatorcontrib><creatorcontrib>Hsiang, Madeline</creatorcontrib><creatorcontrib>Powell, Jeanne M.</creatorcontrib><creatorcontrib>Smith, Kathleen G.</creatorcontrib><creatorcontrib>Jensen, Patricia</creatorcontrib><creatorcontrib>Weinshenker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tillage, Rachel P.</au><au>Sciolino, Natale R.</au><au>Plummer, Nicholas W.</au><au>Lustberg, Daniel</au><au>Liles, L. Cameron</au><au>Hsiang, Madeline</au><au>Powell, Jeanne M.</au><au>Smith, Kathleen G.</au><au>Jensen, Patricia</au><au>Weinshenker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>225</volume><issue>2</issue><spage>785</spage><epage>803</epage><pages>785-803</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons ( Gal cKO–Dbh ). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of Gal cKO–Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. Gal cKO–Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, Gal cKO–Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32065256</pmid><doi>10.1007/s00429-020-02035-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2020-03, Vol.225 (2), p.785-803
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238760
source Springer Nature
subjects Adaptation, Psychological - physiology
Adrenergic Neurons - metabolism
Animals
Anxiety
Biomedical and Life Sciences
Biomedicine
Brain
Brain - metabolism
Cell Biology
Coping
Female
Galanin
Galanin - genetics
Galanin - metabolism
Gene Knock-In Techniques
Hippocampus - metabolism
Hypothalamus
Latency
Male
Mental disorders
Mesencephalon
Metabolites
Mice, Knockout
Motor skill learning
Neurology
Neurons
Neurosciences
Norepinephrine
Original Article
Pons
Pons - metabolism
Prefrontal cortex
Prefrontal Cortex - metabolism
title Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20galanin%20synthesis%20in%20noradrenergic%20neurons%20reduces%20galanin%20in%20select%20brain%20areas%20and%20promotes%20active%20coping%20behaviors&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Tillage,%20Rachel%20P.&rft.date=2020-03-01&rft.volume=225&rft.issue=2&rft.spage=785&rft.epage=803&rft.pages=785-803&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-020-02035-4&rft_dat=%3Cproquest_pubme%3E2366167521%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2366167521&rft_id=info:pmid/32065256&rfr_iscdi=true