Loading…
Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors
Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine th...
Saved in:
Published in: | Brain Structure and Function 2020-03, Vol.225 (2), p.785-803 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943 |
container_end_page | 803 |
container_issue | 2 |
container_start_page | 785 |
container_title | Brain Structure and Function |
container_volume | 225 |
creator | Tillage, Rachel P. Sciolino, Natale R. Plummer, Nicholas W. Lustberg, Daniel Liles, L. Cameron Hsiang, Madeline Powell, Jeanne M. Smith, Kathleen G. Jensen, Patricia Weinshenker, David |
description | Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (
Gal
cKO–Dbh
). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of
Gal
cKO–Dbh
mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover.
Gal
cKO–Dbh
mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically,
Gal
cKO–Dbh
mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses. |
doi_str_mv | 10.1007/s00429-020-02035-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366167521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFSWlSdP-gR6KIGe3smTJq0sghPQDAr20ZzGWx14Fr7QZ2Qu554dH20236aUIoRnmvTcPPcY-1OJTLUT7OQvRSFsJKfZX6ap5xc7qlVGVNKY-OdZanbK3Od8Joe2qtm_YqZLCaKnNGXu8mcImRJhDijwNfIQJYog8P8R5jTlkXpqYCHrCiDQGzyMulGLmhP3iMR8pexZO6GfeEZQGCCFziD3fUtqkuUDBz2GH3KdtiCPvcA27kCi_Y68HmDK-f37P2a8vNz-vv1W3P75-v766rbxuxFwZ5X0DbWdEPzSyA23L8cq2K7CDlF5L0XXSgxfYDB30LahGGW-h1sZY26hzdnnQ3S7dBnuPcSaY3JbCBujBJQju30kMazemnWulWrVGFIGLZwFK9wvm2d2lhWLx7KQqf25aLeuCkgeUp5Qz4XDcUAu3T84dknMlNfc7Obf39vGltyPlT1QFoA6AXEZxRPq7-z-yT4UHqBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366167521</pqid></control><display><type>article</type><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><source>Springer Nature</source><creator>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</creator><creatorcontrib>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</creatorcontrib><description>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (
Gal
cKO–Dbh
). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of
Gal
cKO–Dbh
mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover.
Gal
cKO–Dbh
mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically,
Gal
cKO–Dbh
mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-020-02035-4</identifier><identifier>PMID: 32065256</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Psychological - physiology ; Adrenergic Neurons - metabolism ; Animals ; Anxiety ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - metabolism ; Cell Biology ; Coping ; Female ; Galanin ; Galanin - genetics ; Galanin - metabolism ; Gene Knock-In Techniques ; Hippocampus - metabolism ; Hypothalamus ; Latency ; Male ; Mental disorders ; Mesencephalon ; Metabolites ; Mice, Knockout ; Motor skill learning ; Neurology ; Neurons ; Neurosciences ; Norepinephrine ; Original Article ; Pons ; Pons - metabolism ; Prefrontal cortex ; Prefrontal Cortex - metabolism</subject><ispartof>Brain Structure and Function, 2020-03, Vol.225 (2), p.785-803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Brain Structure and Function is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</citedby><cites>FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32065256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tillage, Rachel P.</creatorcontrib><creatorcontrib>Sciolino, Natale R.</creatorcontrib><creatorcontrib>Plummer, Nicholas W.</creatorcontrib><creatorcontrib>Lustberg, Daniel</creatorcontrib><creatorcontrib>Liles, L. Cameron</creatorcontrib><creatorcontrib>Hsiang, Madeline</creatorcontrib><creatorcontrib>Powell, Jeanne M.</creatorcontrib><creatorcontrib>Smith, Kathleen G.</creatorcontrib><creatorcontrib>Jensen, Patricia</creatorcontrib><creatorcontrib>Weinshenker, David</creatorcontrib><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (
Gal
cKO–Dbh
). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of
Gal
cKO–Dbh
mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover.
Gal
cKO–Dbh
mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically,
Gal
cKO–Dbh
mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</description><subject>Adaptation, Psychological - physiology</subject><subject>Adrenergic Neurons - metabolism</subject><subject>Animals</subject><subject>Anxiety</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cell Biology</subject><subject>Coping</subject><subject>Female</subject><subject>Galanin</subject><subject>Galanin - genetics</subject><subject>Galanin - metabolism</subject><subject>Gene Knock-In Techniques</subject><subject>Hippocampus - metabolism</subject><subject>Hypothalamus</subject><subject>Latency</subject><subject>Male</subject><subject>Mental disorders</subject><subject>Mesencephalon</subject><subject>Metabolites</subject><subject>Mice, Knockout</subject><subject>Motor skill learning</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Norepinephrine</subject><subject>Original Article</subject><subject>Pons</subject><subject>Pons - metabolism</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFSWlSdP-gR6KIGe3smTJq0sghPQDAr20ZzGWx14Fr7QZ2Qu554dH20236aUIoRnmvTcPPcY-1OJTLUT7OQvRSFsJKfZX6ap5xc7qlVGVNKY-OdZanbK3Od8Joe2qtm_YqZLCaKnNGXu8mcImRJhDijwNfIQJYog8P8R5jTlkXpqYCHrCiDQGzyMulGLmhP3iMR8pexZO6GfeEZQGCCFziD3fUtqkuUDBz2GH3KdtiCPvcA27kCi_Y68HmDK-f37P2a8vNz-vv1W3P75-v766rbxuxFwZ5X0DbWdEPzSyA23L8cq2K7CDlF5L0XXSgxfYDB30LahGGW-h1sZY26hzdnnQ3S7dBnuPcSaY3JbCBujBJQju30kMazemnWulWrVGFIGLZwFK9wvm2d2lhWLx7KQqf25aLeuCkgeUp5Qz4XDcUAu3T84dknMlNfc7Obf39vGltyPlT1QFoA6AXEZxRPq7-z-yT4UHqBM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tillage, Rachel P.</creator><creator>Sciolino, Natale R.</creator><creator>Plummer, Nicholas W.</creator><creator>Lustberg, Daniel</creator><creator>Liles, L. Cameron</creator><creator>Hsiang, Madeline</creator><creator>Powell, Jeanne M.</creator><creator>Smith, Kathleen G.</creator><creator>Jensen, Patricia</creator><creator>Weinshenker, David</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</title><author>Tillage, Rachel P. ; Sciolino, Natale R. ; Plummer, Nicholas W. ; Lustberg, Daniel ; Liles, L. Cameron ; Hsiang, Madeline ; Powell, Jeanne M. ; Smith, Kathleen G. ; Jensen, Patricia ; Weinshenker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Psychological - physiology</topic><topic>Adrenergic Neurons - metabolism</topic><topic>Animals</topic><topic>Anxiety</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cell Biology</topic><topic>Coping</topic><topic>Female</topic><topic>Galanin</topic><topic>Galanin - genetics</topic><topic>Galanin - metabolism</topic><topic>Gene Knock-In Techniques</topic><topic>Hippocampus - metabolism</topic><topic>Hypothalamus</topic><topic>Latency</topic><topic>Male</topic><topic>Mental disorders</topic><topic>Mesencephalon</topic><topic>Metabolites</topic><topic>Mice, Knockout</topic><topic>Motor skill learning</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Norepinephrine</topic><topic>Original Article</topic><topic>Pons</topic><topic>Pons - metabolism</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tillage, Rachel P.</creatorcontrib><creatorcontrib>Sciolino, Natale R.</creatorcontrib><creatorcontrib>Plummer, Nicholas W.</creatorcontrib><creatorcontrib>Lustberg, Daniel</creatorcontrib><creatorcontrib>Liles, L. Cameron</creatorcontrib><creatorcontrib>Hsiang, Madeline</creatorcontrib><creatorcontrib>Powell, Jeanne M.</creatorcontrib><creatorcontrib>Smith, Kathleen G.</creatorcontrib><creatorcontrib>Jensen, Patricia</creatorcontrib><creatorcontrib>Weinshenker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tillage, Rachel P.</au><au>Sciolino, Natale R.</au><au>Plummer, Nicholas W.</au><au>Lustberg, Daniel</au><au>Liles, L. Cameron</au><au>Hsiang, Madeline</au><au>Powell, Jeanne M.</au><au>Smith, Kathleen G.</au><au>Jensen, Patricia</au><au>Weinshenker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>225</volume><issue>2</issue><spage>785</spage><epage>803</epage><pages>785-803</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (
Gal
cKO–Dbh
). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of
Gal
cKO–Dbh
mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover.
Gal
cKO–Dbh
mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically,
Gal
cKO–Dbh
mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32065256</pmid><doi>10.1007/s00429-020-02035-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2020-03, Vol.225 (2), p.785-803 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238760 |
source | Springer Nature |
subjects | Adaptation, Psychological - physiology Adrenergic Neurons - metabolism Animals Anxiety Biomedical and Life Sciences Biomedicine Brain Brain - metabolism Cell Biology Coping Female Galanin Galanin - genetics Galanin - metabolism Gene Knock-In Techniques Hippocampus - metabolism Hypothalamus Latency Male Mental disorders Mesencephalon Metabolites Mice, Knockout Motor skill learning Neurology Neurons Neurosciences Norepinephrine Original Article Pons Pons - metabolism Prefrontal cortex Prefrontal Cortex - metabolism |
title | Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20galanin%20synthesis%20in%20noradrenergic%20neurons%20reduces%20galanin%20in%20select%20brain%20areas%20and%20promotes%20active%20coping%20behaviors&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Tillage,%20Rachel%20P.&rft.date=2020-03-01&rft.volume=225&rft.issue=2&rft.spage=785&rft.epage=803&rft.pages=785-803&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-020-02035-4&rft_dat=%3Cproquest_pubme%3E2366167521%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-63cc4a7b60df42ba59595c3978a9f22c520bb2cac0e4fbad7a3436c9a15669943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2366167521&rft_id=info:pmid/32065256&rfr_iscdi=true |