Loading…
First-passage times and normal tissue complication probabilities in the limit of large populations
The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in...
Saved in:
Published in: | Scientific reports 2020-05, Vol.10 (1), p.8786-8786, Article 8786 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in the limit of large, but finite, populations using Kramers–Moyal expansion techniques. We demonstrate these results by application to a stochastic birth-death model for a population of cells in order to develop several approximations to the normal tissue complication probability (NTCP): a problem arising in the radiation treatment of cancers. We specifically allow for interaction between cells, via a nonlinear logistic growth model, and our approximations capture the effects of intrinsic noise on NTCP. We consider examples of NTCP in both a simple model of normal cells and in a model of normal and damaged cells. Our analytical approximation of NTCP could help optimise radiotherapy planning, for example by estimating the probability of complication-free tumour under different treatment protocols. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-64618-9 |