Loading…

Impact of aging on the 6-OHDA-induced rat model of Parkinson’s disease

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several anim...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-05, Vol.21 (10), p.3459
Main Authors: Barata-Antunes, Sandra, Teixeira, Fábio G., Mendes-Pinheiro, Bárbara, Domingues, Ana V., Vilaça-Faria, Helena, Marote, Ana, Silva, Deolinda, Sousa, R. A., Salgado, A. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been developed not only to better understand the mechanisms underlying neurodegeneration but also to test the potential of emerging disease-modifying therapies. However, despite aging being the main risk factor for developing idiopathic PD, most of the studies do not use aged animals. Therefore, this study aimed at assessing the effect of aging in the unilateral 6-hydroxydopamine (6-OHDA)-induced animal model of PD. For this, female young adult and aged rats received a unilateral injection of 6-OHDA into the medial forebrain bundle. Subsequently, the impact of aging on 6-OHDA-induced effects on animal welfare, motor performance, and nigrostriatal integrity were assessed. The results showed that aging had a negative impact on animal welfare after surgery. Furthermore, 6-OHDA-induced impairments on skilled motor function were significantly higher in aged rats when compared with their younger counterparts. Nigrostriatal histological analysis further revealed an increased 6-OHDA-induced dopaminergic cell loss in the SNpc of aged animals when compared to young animals. Overall, our results demonstrate a higher susceptibility of aged animals to 6-OHDA toxic insult. This research was funded by Prémios Santa Casa Neurociências—Prize Mantero Belard for Neurodegenerative Diseases Research (MB-28-2019); Portuguese Foundation for Science and Technology [Ph.D. fellowship to S.B.-A. (PD/BDE/135568/2018), B.M.-P. (SFRH/BD/120124/2016), A.M. (PDE/BDE/113598/2015), and D.S. (PD/BDE/135567/2018)]. This work was also funded by FEDER, through the Competitiveness Internationalization Operational Programme (POCI), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the projects POCI-01-0145-FEDER-007038; POCI-01-0145-FEDER-029751 and POCI-01-0145-FEDER-032619. This article has also been developed under the scope of the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21103459