Loading…

Pedestrian wind comfort near a super-tall building with various configurations in an urban-like setting

Pedestrian wind comfort near a 400 m super-tall building in high and low ambient wind speeds, referred to as Windy and Calm climates, is evaluated by conducting computational fluid dynamics (CFD) simulations. The super-tall building has 15 different configurations and is located at the center of 50...

Full description

Saved in:
Bibliographic Details
Published in:Building simulation 2020, Vol.13 (6), p.1385-1408
Main Authors: Zhang, Xinyue, Weerasuriya, Asiri Umenga, Zhang, Xuelin, Tse, Kam Tim, Lu, Bin, Li, Cruz Yutong, Liu, Chun-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pedestrian wind comfort near a 400 m super-tall building in high and low ambient wind speeds, referred to as Windy and Calm climates, is evaluated by conducting computational fluid dynamics (CFD) simulations. The super-tall building has 15 different configurations and is located at the center of 50 m medium-rise buildings in an urban-like setting. Pedestrian level mean wind speeds near the super-tall building is obtained from three-dimensional (3D), steady-state, Reynolds-Averaged Navier-Stokes (RANS)-based simulations for five incident wind directions ( θ = 0°, 22.5°, 45°, 90°, 180°) that are subsequently compared with two wind comfort criteria specified for Calm and Windy climates. Results show a 1.53 times increase in maximum mean wind speed in the urban area after the construction of a square-shaped super-tall building. The escalated mean wind speeds result in a 23%–15% and 36%–29% decrease in the area with “acceptable wind comfort” in Calm and Windy climates, respectively. The area with pedestrian wind comfort varies significantly with building configuration and incident wind direction, for example, the configurations with sharp corners, large plan aspect ratios and, frontal areas and the orientation consistently show a strong dependency on incident wind direction except for the one with rounded plan shapes. Minor aerodynamic modifications such as corner modifications and aerodynamically-shaped configurations such as tapered and setback buildings show promise in improving pedestrian wind comfort in Windy climate.
ISSN:1996-3599
1996-8744
DOI:10.1007/s12273-020-0658-6