Loading…

Large-scale estimation of random graph models with local dependence

A class of random graph models is considered, combining features of exponential-family models and latent structure models, with the goal of retaining the strengths of both of them while reducing the weaknesses of each of them. An open problem is how to estimate such models from large networks. A nov...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2020-12, Vol.152, p.107029-107029, Article 107029
Main Authors: Babkin, Sergii, Stewart, Jonathan R., Long, Xiaochen, Schweinberger, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A class of random graph models is considered, combining features of exponential-family models and latent structure models, with the goal of retaining the strengths of both of them while reducing the weaknesses of each of them. An open problem is how to estimate such models from large networks. A novel approach to large-scale estimation is proposed, taking advantage of the local structure of such models for the purpose of local computing. The main idea is that random graphs with local dependence can be decomposed into subgraphs, which enables parallel computing on subgraphs and suggests a two-step estimation approach. The first step estimates the local structure underlying random graphs. The second step estimates parameters given the estimated local structure of random graphs. Both steps can be implemented in parallel, which enables large-scale estimation. The advantages of the two-step estimation approach are demonstrated by simulation studies with up to 10,000 nodes and an application to a large Amazon product recommendation network with more than 10,000 products.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2020.107029