Loading…

Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L

Pesticides commonly contaminate the aquatic environments inhabited by mosquito juveniles. However, their role in shaping the mosquito microbiota is not well understood. We hypothesized that environmentally relevant concentrations of atrazine, permethrin and malathion will mediate a shift in the mosq...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-06, Vol.10 (1), p.9489, Article 9489
Main Authors: Juma, Elijah O., Allan, Brian F., Kim, Chang-Hyun, Stone, Christopher, Dunlap, Christopher, Muturi, Ephantus J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pesticides commonly contaminate the aquatic environments inhabited by mosquito juveniles. However, their role in shaping the mosquito microbiota is not well understood. We hypothesized that environmentally relevant concentrations of atrazine, permethrin and malathion will mediate a shift in the mosquito gut bacterial community structure due to their toxic effect on the aquatic bacterial communities, and reduce mosquito gut bacterial diversity by enriching pesticide-degrading bacterial communities over susceptible taxa. Illumina MiSeq sequencing of the V3-V4 hypervariable regions of the 16 S rRNA gene was used to characterize the microbial communities of larval and adult stages of the two mosquito species and the water samples from microcosms treated with each of the pesticides, separately. Bacterial community composition differed by sample type (larval stage vs. adult stage) and water sampling date (day 3 vs. day 7), but not by pesticide treatment. In larval stages, bacterial OTU richness was highest in samples exposed to malathion, intermediate in permethrin, and lowest in controls. Bacterial richness was significantly higher in larval stages compared to adult stages for all treatments. This study provides a primer for future studies evaluating mosquito microbial responses to exposures to chemical pesticides and the possible implications for mosquito ecology.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-66452-5