Loading…

A novel technique for automated concealed face detection in surveillance videos

Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics. Another important research problem is to detect concealed faces, esp...

Full description

Saved in:
Bibliographic Details
Published in:Personal and ubiquitous computing 2021-02, Vol.25 (1), p.129-140
Main Authors: Hosni Mahmoud, Hanan A., Mengash, Hanan Abdullah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics. Another important research problem is to detect concealed faces, especially in high-security places like airports or crowded places like concerts and shopping centres, for they may prevail security threat. Also, in order to help effectively in preventing the spread of Coronavirus, people should wear masks during the pandemic especially in the entrance to hospitals and medical facilities. Surveillance systems in medical facilities should issue warnings against unmasked people. This paper presents a novel technique for concealed face detection based on complexion detection to challenge a concealed face assumption. The proposed algorithm first determine of the existence of a human being in the surveillance scene. Head and shoulder contour will be detected. The face will be clustered to cluster patches. Then determination of presence or absent of human skin will be determined. We proposed a hybrid approach that combines normalized RGB (rgb) and the YCbCr space color. This technique is tested on two datasets; the first one contains 650 images of skin patches. The second dataset contains 800 face images. The algorithm achieves an average detection rate of 97.51% for concealed faces. Also, it achieved a run time comparable with existing state-of-the-art concealed face detection systems that run in real time.
ISSN:1617-4909
1617-4917
DOI:10.1007/s00779-020-01419-x