Loading…

Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation

Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at t...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-06, Vol.10 (1), p.9653-9653, Article 9653
Main Authors: Barthez, Marine, Poplineau, Mathilde, Elrefaey, Marwa, Caruso, Nathalie, Graba, Yacine, Saurin, Andrew J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733
cites cdi_FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733
container_end_page 9653
container_issue 1
container_start_page 9653
container_title Scientific reports
container_volume 10
creator Barthez, Marine
Poplineau, Mathilde
Elrefaey, Marwa
Caruso, Nathalie
Graba, Yacine
Saurin, Andrew J.
description Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus  allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.
doi_str_mv 10.1038/s41598-020-66377-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7296029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413231218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EolXpH2CBLLFhQej1dR7OBmk6PKbq8JCADRvLcZxMSmIPdlJp-uvxNKUtXeCNLZ3vnnt9DyHPGbxhwMVJSFlWigQQkjznRZFcPSKHCGmWIEd8fO99QI5DuIB4MixTVj4lBxyz-MDikPxaTYOy9Of5t-XiM6fK1vSdd8FtN12v6Cd2-pUqb2gzWT12zqq-39GNG1zvWjcFOnplg_bddi_SRunR-UA7S9U0Rg_V7qg37dSrvf6MPGlUH8zxzX1Efnx4_325StZfPp4tF-tEZ6kYk4ZVmdYNmEYoMCViZpiuBWjDRFXXpUAEUVe8MFwYpkBBmoIpyqxiOaqC8yPydvbdTtVgam1sHLOXW98Nyu-kU538V7HdRrbuUhZY5oBlNHg9G2welK0Wa9nZYPwgAYXIs1xcsoi_uunn3e_JhFEOXdCm75U1cUkSU5YCFHmxR18-QC_c5ONarymOnCETkcKZ0jGK4E1zOwQDuU9fzunHIUBepy-vYtGL-7--LfmbdQT4DIQo2db4u97_sf0Do_a8Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413231218</pqid></control><display><type>article</type><title>Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Barthez, Marine ; Poplineau, Mathilde ; Elrefaey, Marwa ; Caruso, Nathalie ; Graba, Yacine ; Saurin, Andrew J.</creator><creatorcontrib>Barthez, Marine ; Poplineau, Mathilde ; Elrefaey, Marwa ; Caruso, Nathalie ; Graba, Yacine ; Saurin, Andrew J.</creatorcontrib><description>Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus  allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66377-z</identifier><identifier>PMID: 32541927</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/136/334 ; 631/136/334/1582/715 ; Animals ; Autophagy ; Biochemistry, Molecular Biology ; Cell Line ; Cell Nucleus - metabolism ; Cellular Biology ; Cellular stress response ; Cytoplasm - metabolism ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Evolution, Molecular ; Evolutionary conservation ; Gene Expression Regulation ; Gene regulation ; Gene silencing ; Genomes ; HeLa Cells ; Homeostasis ; Humanities and Social Sciences ; Humans ; Insects ; Life Sciences ; Molecular biology ; multidisciplinary ; Nutrients ; Organelles ; Phagocytosis ; Phenotypes ; Promoter Regions, Genetic ; Protein Binding ; Science ; Science (multidisciplinary) ; Subcellular Processes ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tumor cell lines</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.9653-9653, Article 9653</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733</citedby><cites>FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733</cites><orcidid>0000-0001-5263-1769 ; 0000-0001-5162-003X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2413231218/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2413231218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32541927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02886568$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barthez, Marine</creatorcontrib><creatorcontrib>Poplineau, Mathilde</creatorcontrib><creatorcontrib>Elrefaey, Marwa</creatorcontrib><creatorcontrib>Caruso, Nathalie</creatorcontrib><creatorcontrib>Graba, Yacine</creatorcontrib><creatorcontrib>Saurin, Andrew J.</creatorcontrib><title>Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus  allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.</description><subject>631/136</subject><subject>631/136/334</subject><subject>631/136/334/1582/715</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Line</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular Biology</subject><subject>Cellular stress response</subject><subject>Cytoplasm - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Evolutionary conservation</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Gene silencing</subject><subject>Genomes</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>multidisciplinary</subject><subject>Nutrients</subject><subject>Organelles</subject><subject>Phagocytosis</subject><subject>Phenotypes</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Subcellular Processes</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor cell lines</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtv1DAUhS0EolXpH2CBLLFhQej1dR7OBmk6PKbq8JCADRvLcZxMSmIPdlJp-uvxNKUtXeCNLZ3vnnt9DyHPGbxhwMVJSFlWigQQkjznRZFcPSKHCGmWIEd8fO99QI5DuIB4MixTVj4lBxyz-MDikPxaTYOy9Of5t-XiM6fK1vSdd8FtN12v6Cd2-pUqb2gzWT12zqq-39GNG1zvWjcFOnplg_bddi_SRunR-UA7S9U0Rg_V7qg37dSrvf6MPGlUH8zxzX1Efnx4_325StZfPp4tF-tEZ6kYk4ZVmdYNmEYoMCViZpiuBWjDRFXXpUAEUVe8MFwYpkBBmoIpyqxiOaqC8yPydvbdTtVgam1sHLOXW98Nyu-kU538V7HdRrbuUhZY5oBlNHg9G2welK0Wa9nZYPwgAYXIs1xcsoi_uunn3e_JhFEOXdCm75U1cUkSU5YCFHmxR18-QC_c5ONarymOnCETkcKZ0jGK4E1zOwQDuU9fzunHIUBepy-vYtGL-7--LfmbdQT4DIQo2db4u97_sf0Do_a8Pw</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Barthez, Marine</creator><creator>Poplineau, Mathilde</creator><creator>Elrefaey, Marwa</creator><creator>Caruso, Nathalie</creator><creator>Graba, Yacine</creator><creator>Saurin, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5263-1769</orcidid><orcidid>https://orcid.org/0000-0001-5162-003X</orcidid></search><sort><creationdate>20200615</creationdate><title>Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation</title><author>Barthez, Marine ; Poplineau, Mathilde ; Elrefaey, Marwa ; Caruso, Nathalie ; Graba, Yacine ; Saurin, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/136</topic><topic>631/136/334</topic><topic>631/136/334/1582/715</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Line</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular Biology</topic><topic>Cellular stress response</topic><topic>Cytoplasm - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Evolutionary conservation</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Gene silencing</topic><topic>Genomes</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>multidisciplinary</topic><topic>Nutrients</topic><topic>Organelles</topic><topic>Phagocytosis</topic><topic>Phenotypes</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Subcellular Processes</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barthez, Marine</creatorcontrib><creatorcontrib>Poplineau, Mathilde</creatorcontrib><creatorcontrib>Elrefaey, Marwa</creatorcontrib><creatorcontrib>Caruso, Nathalie</creatorcontrib><creatorcontrib>Graba, Yacine</creatorcontrib><creatorcontrib>Saurin, Andrew J.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barthez, Marine</au><au>Poplineau, Mathilde</au><au>Elrefaey, Marwa</au><au>Caruso, Nathalie</au><au>Graba, Yacine</au><au>Saurin, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>9653</spage><epage>9653</epage><pages>9653-9653</pages><artnum>9653</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus  allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32541927</pmid><doi>10.1038/s41598-020-66377-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5263-1769</orcidid><orcidid>https://orcid.org/0000-0001-5162-003X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.9653-9653, Article 9653
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7296029
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/136
631/136/334
631/136/334/1582/715
Animals
Autophagy
Biochemistry, Molecular Biology
Cell Line
Cell Nucleus - metabolism
Cellular Biology
Cellular stress response
Cytoplasm - metabolism
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Evolution, Molecular
Evolutionary conservation
Gene Expression Regulation
Gene regulation
Gene silencing
Genomes
HeLa Cells
Homeostasis
Humanities and Social Sciences
Humans
Insects
Life Sciences
Molecular biology
multidisciplinary
Nutrients
Organelles
Phagocytosis
Phenotypes
Promoter Regions, Genetic
Protein Binding
Science
Science (multidisciplinary)
Subcellular Processes
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Tumor cell lines
title Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20ZKSCAN3%20and%20Drosophila%20M1BP%20are%20functionally%20homologous%20transcription%20factors%20in%20autophagy%20regulation&rft.jtitle=Scientific%20reports&rft.au=Barthez,%20Marine&rft.date=2020-06-15&rft.volume=10&rft.issue=1&rft.spage=9653&rft.epage=9653&rft.pages=9653-9653&rft.artnum=9653&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66377-z&rft_dat=%3Cproquest_pubme%3E2413231218%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-f1b5ccf0ef8a0e9225e1cd80ce18bdd982208db37e38e1a0a0440e795b162a733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413231218&rft_id=info:pmid/32541927&rfr_iscdi=true